Reference
1. Paul CR, Moreno MA. Acute Otitis Media. JAMA Pediatr .
2020;174(3):308. doi:10.1001/jamapediatrics.2019.5664
2. Teele DW, Klein JO, Rosner B. Epidemiology of Otitis Media during The
First Seven Years of Life in Children in Greater Boston: A Prospective,
Cohort Study. J Infect Dis . 1989;160(1):83-94.
doi:10.1093/infdis/160.1.83
3. Shaffer AD, Ford MD, Choi SS, Jabbour N. The impact of timing of
tympanostomy tube placement on sequelae in children with cleft palate.Cleft Palate-Craniofacial J . 2019;56(6):720-728.
doi:10.1177/1055665618809228
4. Ruohola A, Meurman O, Nikkari S, et al. Microbiology of acute otitis
media in children with tympanostomy tubes: Prevalences of bacteria and
viruses. Clin Infect Dis . 2006;43(11):1417-1422.
doi:10.1086/509332
5. Bluestone CD, Stephenson JS, Martin LM. Ten-year review of otitis
media pathogens. Pediatr Infect Dis J . 1992;11(8):S7-11.
6. Schilder AGM, Chonmaitree T, Cripps AW, et al. Otitis media.Nat Rev Dis Prim . 2016;2:1-19. doi:10.1038/nrdp.2016.63
7. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial
resistance in developing countries: Causes and control strategies.Antimicrob Resist Infect Control . 2017;6(1):1-8.
doi:10.1186/s13756-017-0208-x
8. Van Dyke MK, Pirçon JY, Cohen R, et al. Etiology of acute otitis
media in children less than 5 years of age: A pooled analysis of 10
similarly designed observational studies. Pediatr Infect Dis J .
2017;36(3):274-281. doi:10.1097/INF.0000000000001420
9. Littorin N, Ahl J, Uddén F, Resman F, Riesbeck K. Reduction of
Streptococcus pneumoniae in upper respiratory tract cultures and a
decreased incidence of related acute otitis media following introduction
of childhood pneumococcal conjugate vaccines in a Swedish county.BMC Infect Dis . 2016;16(1):1-8. doi:10.1186/s12879-016-1750-5
10. Davies TA, Yee YC, Goldschmidt R, Bush K, Sahm DF, Evangelista A.
Infrequent occurrence of single mutations in topoisomerase IV and DNA
gyrase genes among US levofloxacin-susceptible clinical isolates of
Streptococcus pneumoniae from nine institutions (1999-2003). J
Antimicrob Chemother . 2006;57(3):437-442. doi:10.1093/jac/dki487
11. DK Chen AM. Decreased Susceptibility of Streptococcus Pneumoniae.Nejm . Published online 1999:233-239.
12. Arens A. Treatment of acute otitis media in children under 2 years
of age. J Emerg Med . 2011;40(6):722-723.
doi:10.1016/j.jemermed.2011.04.009
13. Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer
activities of silver nanoparticles synthesized from the root hair
extract of Phoenix dactylifera. Mater Sci Eng C .
2018;89(March):429-443. doi:10.1016/j.msec.2018.03.035
14. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: The
powerful nanoweapon against multidrug-resistant bacteria. J Appl
Microbiol . 2012;112(5):841-852. doi:10.1111/j.1365-2672.2012.05253.x
15. Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver
nanoparticles. Nanomedicine Nanotechnology, Biol Med .
2007;3(1):95-101. doi:10.1016/j.nano.2006.12.001
16. Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of
silver nanoparticles and the optimization of orthopedic implants by
advanced modification technologies. Int J Nanomedicine .
2018;13:3311-3327. doi:10.2147/IJN.S165125
17. Murray RGE, Steed P, Elson HE. the Location of the Mucopeptide in
Sections. Can J Microbiol . 1965;11(December 1963):547-560.
18. Lancee B. The Negative Side Effects of Vocational Education.Am Behav Sci . 2016;60(5-6):659-679. doi:10.1177/0002764216632835
19. Budama L, Çakir BA, Topel Ö, Hoda N. A new strategy for producing
antibacterial textile surfaces using silver nanoparticles. Chem
Eng J . 2013;228:489-495. doi:10.1016/j.cej.2013.05.018
20. Shockman GD, Barrett JF. Structure, function, and assembly of cell
walls of gram-positive bacteria. Annu Rev Microbiol .
1983;37:501-527. doi:10.1146/annurev.mi.37.100183.002441
21. Gupta P, Bajpai M, Bajpai SK. Textile technology: Investigation of
antibacterial properties of silver nanoparticle-loaded poly
(acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton
Sci . 2008;12(3):280-286.
22. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced
oxidative stress and toxicity. Biomed Res Int . 2013;2013.
doi:10.1155/2013/942916
23. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of
silver nanoparticles: Biomolecule-nanoparticle organizations targeting
antimicrobial activity. RSC Adv . 2019;9(5):2673-2702.
doi:10.1039/c8ra08982e
24. Hamida RS, Ali MA, Goda DA, Khalil MI, Al-Zaban MI. Novel Biogenic
Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm
Formation and Virulence Activities of Methicillin-Resistant
Staphylococcus aureus (MRSA) Strain. Front Bioeng Biotechnol .
2020;8(May):1-14. doi:10.3389/fbioe.2020.00433
25. Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A.
Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens;
Application for cytotoxicity effect on A549 cell line and photocatalytic
degradation of p-nitrophenol. J Photochem Photobiol B Biol .
2020;202(August 2019):111642. doi:10.1016/j.jphotobiol.2019.111642
26. Tian J, Wong KKY, Ho CM, et al. Topical delivery of silver
nanoparticles promotes wound healing. ChemMedChem .
2007;2(1):129-136. doi:10.1002/cmdc.200600171
27. Santoro CM, Duchsherer NL, Grainger DW. Minimal in vitro
antimicrobial efficacy and ocular cell toxicity from silver
nanoparticles. Nanobiotechnology . 2007;3(2):55-65.
doi:10.1007/s12030-008-9007-z
28. Totaro P, Rambaldini M. Efficacy of antimicrobial activity of slow
release silver nanoparticles dressing in post-cardiac surgery
mediastinitis. Interact Cardiovasc Thorac Surg .
2009;8(1):153-154. doi:10.1510/icvts.2008.188870
29. Austin LA, Kang B, Yen CW, El-Sayed MA. Plasmonic imaging of human
oral cancer cell communities during programmed cell death by
nuclear-targeting silver nanoparticles. J Am Chem Soc .
2011;133(44):17594-17597. doi:10.1021/ja207807t
30. He X, Peng C, Qiang S, et al. Less is more: Silver-AIE core@shell
nanoparticles for multimodality cancer imaging and synergistic therapy.Biomaterials . 2020;238(February):119834.
doi:10.1016/j.biomaterials.2020.119834
31. He D, Garg S, Waite TD. H 2O 2-mediated oxidation of zero-valent
silver and resultant interactions among silver nanoparticles, silver
ions, and reactive oxygen species. Langmuir .
2012;28(27):10266-10275. doi:10.1021/la300929g
32. Aabdallah M, Bayoumy A, Ibrahim A. Antimicrobial Activity and
Synergistic Antimicrobial Potential of Silver Nanoparticles against
microbial contaminants isolated from pharmaceutical production areas.Res J Appl Biotechnol . 2019;5(1):86-98.
doi:10.21608/rjab.2019.76899
33. Alkawareek MY, Bahlool A, Abulateefeh SR, Alkilany AM. Synergistic
antibacterial activity of silver nanoparticles and hydrogen peroxide.PLoS One . 2019;14(8):1-12. doi:10.1371/journal.pone.0220575
34. Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and
challenges. Polymer (Guildf) . 2008;49(8):1993-2007.
doi:10.1016/j.polymer.2008.01.027
35. Michida N, Hayashi M, Hori T. Comparison of event related potentials
with and without hypnagogic imagery. Psychiatry Clin Neurosci .
1998;52(2):145-147. doi:10.1111/j.1440-1819.1998.tb00997.x
36. Moawad FA, Ali AA, Salem HF. Nanotransfersomes-loaded
thermosensitive in situ gel as a rectal delivery system of tizanidine
HCL: Preparation, in vitro and in vivo performance. Drug Deliv .
2017;24(1):252-260. doi:10.1080/10717544.2016.1245369
37. Liu Y, Wang X, Liu Y, Di X. Thermosensitive In Situ Gel Based on
Solid Dispersion for Rectal Delivery of Ibuprofen. AAPS
PharmSciTech . 2018;19(1):338-347. doi:10.1208/s12249-017-0839-5
38. Koffi AA, Agnely F, Ponchel G, Grossiord JL. Modulation of the
rheological and mucoadhesive properties of thermosensitive
poloxamer-based hydrogels intended for the rectal administration of
quinine. Eur J Pharm Sci . 2006;27(4):328-335.
doi:10.1016/j.ejps.2005.11.001
39. Sridhar V, Wairkar S, Gaud R, Bajaj A, Meshram P. Brain targeted
delivery of mucoadhesive thermosensitive nasal gel of selegiline
hydrochloride for treatment of Parkinson’s disease. J Drug
Target . 2018;26(2):150-161. doi:10.1080/1061186X.2017.1350858
40. Mura P, Mennini N, Nativi C, Richichi B. In situ
mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal
extended delivery of opiorphin. Eur J Pharm Biopharm .
2018;122(October 2017):54-61. doi:10.1016/j.ejpb.2017.10.008
41. Mirza MA, Panda AK, Asif S, et al. A vaginal drug delivery model.Drug Deliv . 2016;23(8):3123-3134.
doi:10.3109/10717544.2016.1153749
42. Rençber S, Karavana SY, Şenyiğit ZA, Eraç B, Limoncu MH, Baloğlu E.
Mucoadhesive in situ gel formulation for vaginal delivery of
clotrimazole: formulation, preparation, and in vitro/in vivo evaluation.Pharm Dev Technol . 2017;22(4):551-561.
doi:10.3109/10837450.2016.1163385
43. Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of
poloxamer 407-based hydrogels: An overview. Pharmaceutics .
2018;10(3):1-26. doi:10.3390/pharmaceutics10030159
44. Rana AK, Upadhyay D, Yadav A, Prasad S. Correlation of Tympanic
Membrane Perforation with Hearing Loss and Its Parameters in Chronic
Otitis Media: An Analytical Study. Indian J Otolaryngol Head Neck
Surg . 2020;72(2):187-193. doi:10.1007/s12070-019-01740-9
45. Marchisio P, Esposito S, Baggi E, et al. Prospective evaluation of
the aetiology of acute otitis media with spontaneous tympanic membrane
perforation. Clin Microbiol Infect . 2017;23(7):486.e1-486.e6.
doi:10.1016/j.cmi.2017.01.010
46. Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G.
Characterization and optical studies of PVP-capped silver nanoparticles.J Nanostructure Chem . 2017;7(1):37-46.
doi:10.1007/s40097-016-0212-3
47. Solomon SD, Bahadory M, Jeyarajasingam A V., Rutkowsky SA, Boritz C,
Mulfinger L. Synthesis and study of silver nanoparticles. J Chem
Educ . 2007;84(2):322-325. doi:10.1021/ed084p322
48. Starner TD, Zhang N, Kim GH, Apicella MA, McCray PB. Haemophilus
influenzae forms biofilms on airway epithelia: Implications in cystic
fibrosis. Am J Respir Crit Care Med . 2006;174(2):213-220.
doi:10.1164/rccm.200509-1459OC
49. Barbosa JO, Rossoni RD, Vilela SFG, et al. Streptococcus mutans can
modulate biofilm formation and attenuate the virulence of Candida
Albicans. PLoS One . 2016;11(3):1-16.
doi:10.1371/journal.pone.0150457
50. Quintero Moreno B, Araque M, Mendoza E. Evaluation of Two
Supplemented Culture Media for Long-Term, Room-Temperature Preservation
of Streptococcus pneumoniae Strains. Biomed Res Int .
2017;2017:1218798. doi:10.1155/2017/1218798
51. Yang R, Sabharwal V, Okonkwo OS, et al. Treatment of otitis media by
transtympanic delivery of antibiotics. Sci Transl Med .
2016;8(356):1-11. doi:10.1126/scitranslmed.aaf4363
52. Manikam VR, Cheong KY, Razak KA. Chemical reduction methods for
synthesizing Ag and Al nanoparticles and their respective nanoalloys.Mater Sci Eng B Solid-State Mater Adv Technol .
2011;176(3):187-203. doi:10.1016/j.mseb.2010.11.006
53. Sun Y, Liu Y, Guizhe Z, Zhang Q. Effects of hyperbranched
poly(amido-amine)s structures on synthesis of Ag particles. J Appl
Polym Sci . 2008;107(1):9-13. doi:10.1002/app.26132
54. Cloutier CR, Alfantazi A, Gyenge E. Physicochemical properties of
alkaline aqueous sodium metaborate solutions. J Fuel Cell Sci
Technol . 2007;4(1):88-98. doi:10.1115/1.2393310
55. Zhang Z, Zhao B, Hu L. PVP protective mechanism of ultrafine silver
powder synthesized by chemical reduction processes. J Solid State
Chem . 1996;121(1):105-110. doi:10.1006/jssc.1996.0015
56. Chou K Sen, Ren CY. Synthesis of nanosized silver particles by
chemical reduction method. Mater Chem Phys . 2000;64(3):241-246.
doi:10.1016/S0254-0584(00)00223-6
57. Sadeghi B, Pourahmad A. Effects of protective agents (PVA & PVP) on
the formation of silver nanoparticles. Int J Nanosci Nanotechnol .
2008;4(1):3-12.
58. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A. Silver nanoparticles as
pigments for water-based ink-jet inks. Chem Mater .
2003;15(11):2208-2217. doi:10.1021/cm021804b
59. Xu Y, Li S, Yue X, Lu W. Nanosilver-cellulose antibacterials.BioResources . 2018;13(1):2150-2170.
60. Pabisch S, Feichtenschlager B, Kickelbick G, Peterlik H. Effect of
interparticle interactions on size determination of zirconia and silica
based systems - A comparison of SAXS, DLS, BET, XRD and TEM. Chem
Phys Lett . 2012;521:91-97. doi:10.1016/j.cplett.2011.11.049
61. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of
different characterization methods for nanoparticle dispersions before
and after aerosolization. Anal Methods . 2014;6(18):7324-7334.
doi:10.1039/c4ay01203h
62. Reimche JL, Kirse DJ, Whigham AS, Swords WE. Resistance of
non-typeable Haemophilus influenzae biofilms is independent of biofilm
size. Pathog Dis . 2017;75(1):1-11. doi:10.1093/femspd/ftw112
63. Pericone CD, Overweg K, Hermans PWM, Weiser JN. Inhibitory and
bactericidal effects of hydrogen peroxide production by Streptococcus
pneumoniae on other inhabitants of the upper respiratory tract.Infect Immun . 2000;68(7):3990-3997.
doi:10.1128/IAI.68.7.3990-3997.2000
64. Carlsson J, Iwami Y, Yamada T. Hydrogen peroxide excretion by oral
streptococci and effect of lactoperoxidase-thiocyanate-hydrogen
peroxide. Infect Immun . 1983;40(1):70-80.
doi:10.1128/iai.40.1.70-80.1983
65. Thomas EL, Pera KA. Oxygen metabolism of Streptococcus mutans:
Uptake of oxygen and release of superoxide and hydrogen peroxide.J Bacteriol . 1983;154(3):1236-1244.
doi:10.1128/jb.154.3.1236-1244.1983
66. Banas JA. Virulence properties of Streptococcus mutans. Front
Biosci . 2004;9(June):1267-1277. doi:10.2741/1305
67. Kashyap N, Katlam T, Avinash A, Kumar B, Kulshrestha R, Das P.
Middle ear infection in children and its association with dental caries.Med Pharm Reports . 2019;92(3):271-276. doi:10.15386/cjmed-1043
68. Baldeck JD, Marquis RE. Targets for hydrogen-peroxide-induced damage
to suspension and biofilm cells of Streptococcus mutans. Can J
Microbiol . Published online 2008.
69. Li D, Nie W, Chen L, et al. Fabrication of curcumin-loaded
mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for
rapid hemostasis and antibacterial treatment. RSC Adv .
2017;7(13):7973-7982. doi:10.1039/c6ra27319j
70. Setiyorini Y, Lou X, Pintowantoro S. The Influence of Temperature
and Drug Concentrations Prednisolone in NIPAAm Copolymer. Procedia
Chem . 2012;4:336-342. doi:10.1016/j.proche.2012.06.047
71. Dear SP, Saunders JC. Middle ear structure in the chinchilla: A
quantitative study. Am J Otolaryngol - Head Neck Med Surg .
1988;9(2):58-67. doi:10.1016/S0196-0709(88)80009-7