REFERENCES
Alowitz, M. J., & Scherer, M. M. (2002). Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal. Environ Sci Techno ,36 , 299-306.https://doi.org/10.1021/es011000h
Beese-Vasbender, P. F, Nayak, S., Erbe, A., Stratmann, M., & Mayrhofer. K. J. J. (2015). Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4.Electrochim Acta , 167 , 321–329.https://doi.org/10.1016/j.electacta.2015.03.184
Daniels, L., Belay, N., Rajagopal, B. S., & Weimer, P. J. (1987). Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science ,237 , 509–511.https://doi.org/10.1126/science.237.4814.509
De Windt, W., Boon, N., Siciliano, S. D., & Verstraete, W. (2003). Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products byShewanella oneidensis MR-1. Environ Microbiol , 5 , 1192–1202.https://doi.org/10.1046/j.1462-2920.2003.00527.x
Deng, X., Dohmae, N., Nealson, K. H., Hashimoto, K., & Okamoto, A. (2018). Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv , 4 , eaao5682.https://doi.org/10.1126/sciadv.aao5682
Dinh, H. T., Kuever, J., Muβmann, M., Hassel, A. W., Stratmann, M., & Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms.Nature , 427 , 829-832.https://doi.org/10.1038/nature02321
Enning, D., & Garrelfs, J. (2014). Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol , 80 , 1226-1236.https://doi.org/10.1128/AEM.02848-13
Enning, D., Venzlaff, H., Garrelfs, J., Dinh, H. T., Meyer, V., Mayrhofer, K., Hassel, A. W., Stratmann, M., & Widdel, F. (2012). Marine sulfate‐reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol ,14 , 1772-1787.https://doi.org/10.1111/j.1462-2920.2012.02778.x
Ginner, J. L., Alvarez, P. J. J., Smith, S. L., & Scherer, M. M. (2004). Nitrate and nitrite reduction by Fe0: influence of mass transport, temperature, and denitrifying microbes.Environ Eng Sci , 21 , 219–229.https://doi.org/10.1089/109287504773087381
Gittel, A., Sørensen, K. B., Skovhus, T. L., Ingvorsen, K., & Schramm, A. (2009). Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol , 75 , 7086-7096.https://doi.org/10.1128/AEM.01123-09
Holmes, D. E., Nevin, K. P., Woodard, T. L., Peacock, A. D., & Lovley, D. R. (2007). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting psychrotolerant anaerobe of the phylumBacteroidetes , isolated from a marine-sediment fuel cell.Int J Syst Evol Microbiol , 57, 701-707.https://doi.org/10.1099/ijs.0.64296-0
Iino, T., Sakamoto, M., & Ohkuma, M. (2015a). Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans . Int J Syst Evol Microbiol , 65 , 2865–2869.https://doi.org/10.1099/ijs.0.000343
Iino, T., Ito, K., Wakai, S., Tsurumaru, H., Ohkuma, M., & Harayama, S. (2015b). Iron corrosion induced by nonhydrogenotrophic nitrate-reducingProlixibacter sp. strain MIC1-1. Appl Environ Microbiol ,81 , 1839–1846.https://doi.org/10.1128/AEM.03741-14
Iino, T., Mori, K., Uchino, Y., Nakagawa, T., Harayama, S., & Suzuki, K. (2010). Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteriaclassis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol , 60 , 1376-1382.https://doi.org/10.1099/ijs.0.012484-0
Isa, M. I. H., Cheng, Y. L., & Isa, M. I. N., (2012). Saccharides glucose as a potential corrosion inhibition for mild steel in seawater.Int J Recent Sci Res , 2 , 123–127.
Javaherdashti. R. (2008). Microbiologically influenced corrosion: an engineering insight. Springer-Verlag. New York.
Jia, R., Yang, D., Xu, D., & Gu, T. (2017). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.Bioelectrochemistry , 118 , 38-46.https://doi.org/10.1016/j.bioelechem.2017.06.013
Lahme, S., Enning, D., Callbeck, C. M., Vega, D. M., Curtis, T. P., Head, I. M., & Huberta, C. R. J. (2019). Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Appl Environ Microbiol , 85 , e01891-18.https://doi.org/10.1128/AEM.01891-18
Miller II, R. B., Lawson, K., Sadek, A., Monty, C. N., & Senko, J. M. (2018). Uniform and pitting corrosion of carbon steel byShewanella oneidensis MR-1 under nitrate-reducing conditions.Appl Environ Microbiol , 84 , e00790-18.https://doi.org/10.1128/AEM.00790-18
Mori, K., Tsurumaru, H., & Harayama, S. (2010). Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng , 110 , 426–430.https://doi.org/10.1016/j.jbiosc.2010.04.012
Okamoto, A., Kalathil, S., Deng, X., Hashimoto, K., Nakamura, R., & Nealson, K. H. (2014). Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep4 , 5628.https://doi.org/10.1038/srep05628
Saito, H., & Miura, K. (1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta ,72 , 619-629.https://doi.org/10.1016/0926-6550(63)90386-4
Saitou, N., & Nei, M. (1987). A neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol , 4 , 406-425.https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sandell, E.B. (1959). Colorimetric determination of trace metals. The chemical analysis monograph series, vol. 3. Interscience Publishers, Inc, New York, NY.
Schaedler, F., Lockwood, C., Lueder, U., Glombitza, C., Kappler, A., & Schmidta, C. (2018). Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(II)-oxidizing bacteria in littoral freshwater sediments. Appl Environ Microbiol , 84 , e02013-17.https://doi.org/10.1128/AEM.02013-17
Schwermer, C. U., Lavik, G., Abed, R. M. M., Dunsmore, B., Ferdelman, T. G., Stoodley, P., Gieseke, A, & de Beer, D. (2008). Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl Environ. Microbiol , 74 , 2841-2851.https://doi.org/10.1128/AEM.02027-07
Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol ,44 , 846–849.https://doi.org/10.1099/00207713-44-4-846
Telang, A. J., Evert, S., Foght, J. M., Westlake, D. W. S., Jenneman, G. E., Gevertz, D., & Voordouw, G. (1997). Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol , 63 , 1785-1793.https://doi.org/10.1128/AEM.63.5.1785-1793.1997
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res , 24 , 4876-4882.https://doi.org/10.1093/nar/25.24.4876
Till, B. A., Weathers, L. J., & Alvarez, P. J. J. (1998). Fe(0)-supported autotrophic denitrification. Environ Sci Technol , 32, 634-639.https://doi.org/10.1021/es9707769
Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., & Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol , 60 , 249–266.https://doi.org/10.1099/ijs.0.016949-0
Touzel, J. P., & Albagnac, G. (1983). Isolation and characterization ofMethanococcus mazei strain MC3. FEMS Microbiol Lett , 16 , 241-245.https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
Tsurumaru, H., Ito, N., Mori, K., Wakai, S., Uchiyama, T., Iino, T., Hosoyama, A, Ataku, H, Nishijima, K, Mise, M, Shimizu, A, Harada, T, Horikawa, H, Ichikawa, N, Sekigawa, T, Jinno, K, Tanikawa, S, Yamazaki, J, Sasaki, K, Yamazaki, S, Fujita, N, & Harayama, S. (2018). An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis. Sci Rep , 8 , 15149.https://doi.org/10.1038/s41598-018-33541-5
Uchiyama, T., Ito, K., Mori, K., Tsurumaru, H., & Harayama, S. (2010). Iron-corroding methanogen isolated from a crude-oil storage tank.Appl Environ Microbiol , 76 , 1783-1788.https://doi.org/10.1128/AEM.00668-09
Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K. J. J., Hassel, A. W., Widdel, F., & Stratmann, M. (2013). Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci , 66 , 88-96.https://doi.org/10.1016/j.corsci.2012.09.006
Wolin, E. A., Wolin, M. J., & Wolfe, R. S. (1963). Formation of methane by bacterial extracts. J Biol Chem , 238 , 2882-2886.
Xu, D., Li, Y., Song, F., & Gu, T. (2013). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformi s. Corros Sci ,77, 385-390.https://doi.org/10.1016/j.corsci.2013.07.044
Zarasvand, K. A., & Rai, V. R. (2014). Microorganisms: induction and inhibition of corrosion in metals. Int Biodeterior Biodegradation , 87 , 66-74.https://doi.org/10.1016/j.ibiod.2013.10.023