References:
1. Vazin A, Japoni A, Shahbazi S, Davarpanah MA. Vancomycin utilization evaluation at hematology-oncology ward of a teaching hospital in Iran. Iranian journal of pharmaceutical research: IJPR. 2012;11(1):163.
2. Zhang Y, Wang T, Zhang D, You H, Dong Y, Liu Y, et al. Therapeutic Drug Monitoring Coupled With Bayesian Forecasting Could Prevent Vancomycin-Associated Nephrotoxicity in Renal Insufficiency Patients: A Prospective Study and Pharmacoeconomic Analysis. Therapeutic drug monitoring. 2020;42(4):600-9.
3. Elbarbry F. Vancomycin dosing and monitoring: critical evaluation of the current practice. European journal of drug metabolism and pharmacokinetics. 2018;43(3):259-68.
4. Tobin C, Darville J, Thomson A, Sweeney G, Wilson J, MacGowan A, et al. Vancomycin therapeutic drug monitoring: is there a consensus view? The results of a UK National External Quality Assessment Scheme (UK NEQAS) for Antibiotic Assays questionnaire. Journal of Antimicrobial Chemotherapy. 2002;50(5):713-8.
5. Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney international. 2010;77(9):760-4.
6. Ghasemiyeh P, Vazin A, Zand F, Azadi A, Karimzadeh I, Mohammadi-Samani S. A simple and validated HPLC method for vancomycin assay in plasma samples: the necessity of TDM center development in Southern Iran. Research in Pharmaceutical Sciences. 2020;15(6):529-40.
7. Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. American journal of health-system pharmacy. 2006;63(23):2365-70.
8. Estes KS, Derendorf H. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin. European journal of medical research. 2010;15(12):533-43.
9. Vancomycin: Drug information. UpToDateMarch 2021.
10. Olson J, Hersh AL, Sorensen J, Zobell J, Anderson C, Thorell EA. Intravenous vancomycin therapeutic drug monitoring in children: evaluation of a pharmacy-driven protocol and collaborative practice agreement. Journal of the Pediatric Infectious Diseases Society. 2020;9(3):334-41.
11. Kim S-H, Kang C-I, Lee S-H, Choi J-S, Huh K, Cho SY, et al. Weight-based vancomycin loading strategy may not improve achievement of optimal vancomycin concentration in patients with preserved renal function. Journal of Chemotherapy. 2020:1-6.
12. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2020;77(11):835-64.
13. Abdul-Aziz MH, Alffenaar J-WC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper#. Intensive care medicine. 2020;46:1127-53.
14. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrobial agents and chemotherapy. 2014;58(1):309-16.
15. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from here. Clinical infectious diseases. 2011;52(8):969-74.
16. Hao J-J, Chen H, Zhou J-X. Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. International journal of antimicrobial agents. 2016;47(1):28-35.
17. Ampe E, Delaere B, Hecq J-D, Tulkens PM, Glupczynski Y. Implementation of a protocol for administration of vancomycin by continuous infusion: pharmacokinetic, pharmacodynamic and toxicological aspects. International journal of antimicrobial agents. 2013;41(5):439-46.
18. Han HK, An H, Shin K-H, Shin D, Lee SH, Kim JH, et al. Trough concentration over 12.1 mg/l is a major risk factor of vancomycin-related nephrotoxicity in patients with therapeutic drug monitoring. Therapeutic drug monitoring. 2014;36(5):606-11.
19. Burns AN, Goldman JL. A Moving Target—Vancomycin Therapeutic Monitoring. Journal of the Pediatric Infectious Diseases Society. 2020;9(4):474-8.
20. Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clinical Infectious Diseases. 2019;69(11):1881-7.
21. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrobial agents and chemotherapy. 2018;62(2).
22. Lines J, Burchette J, Kullab SM, Lewis P. Evaluation of a trough-only extrapolated area under the curve vancomycin dosing method on clinical outcomes. International Journal of Clinical Pharmacy. 2020:1-7.
23. Al-Sulaiti FK, Nader AM, Saad MO, Shaukat A, Parakadavathu R, Elzubair A, et al. Clinical and Pharmacokinetic Outcomes of Peak–Trough-Based Versus Trough-Based Vancomycin Therapeutic Drug Monitoring Approaches: A Pragmatic Randomized Controlled Trial. European journal of drug metabolism and pharmacokinetics. 2019;44(5):639-52.
24. Drennan PG, Begg EJ, Gardiner SJ, Kirkpatrick CM, Chambers ST. The dosing and monitoring of vancomycin: what is the best way forward? International journal of antimicrobial agents. 2019;53(4):401-7.
25. Suzuki Y, Kawasaki K, Sato Y, Tokimatsu I, Itoh H, Hiramatsu K, et al. Is peak concentration needed in therapeutic drug monitoring of vancomycin? A pharmacokinetic-pharmacodynamic analysis in patients with methicillin-resistant Staphylococcus aureus pneumonia. Chemotherapy. 2012;58(4):308-12.
26. Pai MP, Hong J, Krop L. Peak measurement for vancomycin AUC estimation in obese adults improves precision and lowers bias. Antimicrobial agents and chemotherapy. 2017;61(4).
27. Holmes N. Using AUC/MIC to guide vancomycin dosing: ready for prime time? Clinical Microbiology and Infection. 2020;26(4):406-8.
28. Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clinical pharmacokinetics. 2013;52(1):9-22.
29. Turner RB, Kojiro K, Shephard EA, Won R, Chang E, Chan D, et al. Review and validation of Bayesian dose‐optimizing software and equations for calculation of the vancomycin area under the curve in critically ill patients. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2018;38(12):1174-83.
30. Guo T, van Hest RM, Fleuren LM, Roggeveen LF, Bosman RJ, van der Voort PH, et al. Why we should sample sparsely and aim for a higher target: Lessons from model‐based therapeutic drug monitoring of vancomycin in intensive care patients. British Journal of Clinical Pharmacology. 2020.
31. Mogle BT, Steele JM, Seabury RW, Dang UJ, Kufel WD. Implementation of a two-point pharmacokinetic AUC-based vancomycin therapeutic drug monitoring approach in patients with methicillin-resistant Staphylococcus aureus bacteraemia. International journal of antimicrobial agents. 2018;52(6):805-10.
32. Oda K, Jono H, Nosaka K, Saito H. Reduced nephrotoxicity with vancomycin therapeutic drug monitoring guided by area under the concentration–time curve against a trough 15–20 μg/mL concentration. International Journal of Antimicrobial Agents. 2020;56(4):106109.
33. Heil EL, Claeys KC, Mynatt RP, Hopkins TL, Brade K, Watt I, et al. Making the change to area under the curve–based vancomycin dosing. American Journal of Health-System Pharmacy. 2018;75(24):1986-95.
34. Biagi MJ, Butler DA, Wenzler E. AUC-based monitoring of vancomycin: closing the therapeutic window. The journal of applied laboratory medicine. 2019;3(4):743-6.
35. Haeseker M, Croes S, Neef C, Bruggeman C, Stolk L, Verbon A. Evaluation of vancomycin prediction methods based on estimated creatinine clearance or trough levels. Therapeutic drug monitoring. 2016;38(1):120-6.
36. Tan C, Lee H, Ti T, Lee E. Pharmacokinetics of intravenous vancomycin in patients with end-stage renal failure. Therapeutic drug monitoring. 1990;12(1):29-34.
37. Matzke GR, Mcgory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrobial agents and chemotherapy. 1984;25(4):433-7.
38. Macias WL, Mueller BA, Scarim SK. Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance. Clinical Pharmacology & Therapeutics. 1991;50(6):688-94.
39. Goti V, Chaturvedula A, Fossler M. Hospitalized Patients With and Without Hemodialysis Have Markedly Different Vancomycin Pharmacokinetics: A Population Pharmacokinetic Model-Based Analysis (vol 40, pg 212, 2018). THERAPEUTIC DRUG MONITORING. 2019;41(4):549-.
40. Charoensareerat T, Chaijamorn W, Boonpeng A, Srisawat N, Pummangura C, Pattharachayakul S. Optimal vancomycin dosing regimens for critically ill patients with acute kidney injury during continuous renal replacement therapy: A Monte Carlo simulation study. Journal of Critical Care. 2019;54:77-82.
41. Khoei A, Soltani R, Emami J, Badri S, Taheri S. Therapeutic drug monitoring of vancomycin by AUCτ-MIC ratio in patients with chronic kidney disease. Research in Pharmaceutical Sciences. 2019;14(1):84.
42. Marti R, Rosell M, Pou L, García L, Pascual C. Influence of biochemical parameters of liver function on vancomycin pharmacokinetics. Pharmacology & toxicology. 1996;79(2):55-9.
43. Westphal J-F, Brogard J-M. Clinical pharmacokinetics of newer antibacterial agents in liver disease. Clinical pharmacokinetics. 1993;24(1):46-58.
44. Brunetti L, Song JH, Suh D, Kim HJ, Seong YH, Lee DS, et al. The risk of vancomycin toxicity in patients with liver impairment. Annals of Clinical Microbiology and Antimicrobials. 2020;19:1-9.
45. Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Vazin A, Zand F. A Brief ICU Residents’ Guide: Pharmacotherapy, Pharmacokinetic Aspects and Dose Adjustments in Critically Ill Adult Patients Admitted to ICU. Trends in Anaesthesia and Critical Care. 2021.
46. Turner RB, Kojiro K, Won R, Chang E, Chan D, Elbarbry F. Prospective evaluation of vancomycin pharmacokinetics in a heterogeneous critically ill population. Diagnostic Microbiology and Infectious Disease. 2018;92(4):346-51.
47. Radke C, Horn D, Lanckohr C, Ellger B, Meyer M, Eissing T, et al. Development of a physiologically based pharmacokinetic modelling approach to predict the pharmacokinetics of vancomycin in critically ill septic patients. Clinical pharmacokinetics. 2017;56(7):759-79.
48. Roberts JA, Lipman J. Antibacterial dosing in intensive care. Clinical pharmacokinetics. 2006;45(8):755-73.
49. Garaud J-J, Regnier B, Inglebert F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in critically ill patients. Journal of Antimicrobial Chemotherapy. 1984;14(suppl_D):53-7.
50. Honore PM, De Bels D, Kugener L, Redant S, Attou R, Gallerani A, et al. Vancomycin pharmacokinetics in critically ill obese patients: can the clinician sit back and relax? Critical Care. 2019;23(1):15.
51. Dolton M, Xu H, Cheong E, Maitz P, Kennedy P, Gottlieb T, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns. 2010;36(4):469-76.
52. Rybak MJ, Albrecht L, Berman J, Warbasse L, Svensson C. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrobial agents and chemotherapy. 1990;34(5):792-5.
53. Hill DM, Velamuri SR, Lanfranco J, Legro IR, Sinclair SE, Hickerson WL. Optimization of an empiric vancomycin dosing algorithm for improved target concentration attainment in patients with thermal injury. Burns. 2019;45(2):423-32.
54. Small PM, Chambers HF. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrobial Agents and Chemotherapy. 1990;34(6):1227-31.
55. Laiprasert J, Klein K, Mueller BA, Pearlman MD. Transplacental passage of vancomycin in noninfected term pregnant women. Obstetrics & Gynecology. 2007;109(5):1105-10.
56. Reyes MP, Ostrea Jr EM, Cabinian AE, Schmitt C, Rintelmann W. Vancomycin during pregnancy: does it cause hearing loss or nephrotoxicity in the infant? American journal of obstetrics and gynecology. 1989;161(4):977-81.
57. Heble Jr DE, McPherson C, Nelson MP, Hunstad DA. Vancomycin trough concentrations in overweight or obese pediatric patients. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2013;33(12):1273-7.
58. Chin KG, Mactal-Haaf C, McPherson III CE. Use of anti-infective agents during lactation: part 1—beta-lactam antibiotics, vancomycin, quinupristin-dalfopristin, and linezolid. Journal of Human Lactation. 2000;16(4):351-8.
59. White S, Sakon C, Fitzgerald L, Kam C, McDade E, Wong A. Comparison of Vancomycin Pharmacokinetics in Cystic Fibrosis Patients Pre and Post-lung Transplant. Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine. 2020;14:1179548420930925.
60. Tsang M. A Practice of Anesthesia for Infants and Children. Canadian Journal of Anesthesia/Journal canadien d’anesthésie. 2018;65(12):1392-3.
61. Pan Y, He X, Yao X, Yang X, Wang F, Ding X, et al. The effect of body mass index and creatinine clearance on serum trough concentration of vancomycin in adult patients. BMC Infectious Diseases. 2020;20(1):1-7.
62. Vance-Bryan K, Guay D, Gilliland S, Rodvold K, Rotschafer JC. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrobial agents and chemotherapy. 1993;37(3):436-40.
63. Smit C, Wasmann RE, Goulooze SC, Wiezer MJ, van Dongen EP, Mouton JW, et al. Population pharmacokinetics of vancomycin in obesity: Finding the optimal dose for (morbidly) obese individuals. British Journal of Clinical Pharmacology. 2020;86(2):303-17.
64. Grace E. Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we have learned over the past 30 years. Journal of antimicrobial chemotherapy. 2012;67(6):1305-10.
65. Masich AM, Kalaria SN, Gonzales JP, Heil EL, Tata AL, Claeys KC, et al. Vancomycin Pharmacokinetics in Obese Patients with Sepsis or Septic Shock. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2020;40(3):211-20.
66. Omote S, Yano Y, Hashida T, Masuda S, Yano I, Katsura T, et al. A retrospective analysis of vancomycin pharmacokinetics in Japanese cancer and non-cancer patients based on routine trough monitoring data. Biological and Pharmaceutical Bulletin. 2009;32(1):99-104.
67. Al-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. Journal of Oncology Pharmacy Practice. 2010;16(4):245-50.
68. Zhang X, Wang D. The characteristics and impact indicator of vancomycin pharmacokinetics in cancer patients complicated with severe pneumonia. Journal of Infection and Chemotherapy. 2020.
69. Izumisawa T, Wakui N, Kaneko T, Soma M, Imai M, Saito D, et al. Increased Vancomycin Clearance in Patients with Solid Malignancies. Biological and Pharmaceutical Bulletin. 2020:b20-00083.
70. Nakayama H, Suzuki M, Kato T, Echizen H. Vancomycin pharmacokinetics in patients with advanced cancer near end of life. European Journal of Drug Metabolism and Pharmacokinetics. 2019;44(6):837-43.
71. Cardile AP, Tan C, Lustik MB, Stratton AN, Madar CS, Elegino J, et al. Optimization of time to initial vancomycin target trough improves clinical outcomes. Springerplus. 2015;4(1):364.
72. Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I, Mohammadi-Samani S, Vazin A, Safari A, et al. Major Neurologic Adverse Drug Reactions, Potential Drug-Drug Interactions and Pharmacokinetic Aspects of Drugs Used in COVID-19 Patients with Stroke: A Narrative Review. Therapeutics and clinical risk management. 2020;16:595-605.
73. Ghasemiyeh P, Mohammadi-Samani S. Iron Chelating Agents: Promising Supportive Therapies in Severe Cases of COVID-19? Trends in Pharmaceutical Sciences. 2020;6(2):65-6.
74. Ghasemiyeh P, Mohammadi-Samani S. COVID-19 Outbreak: Challenges in Pharmacotherapy Based on Pharmacokinetic and Pharmacodynamic Aspects of Drug Therapy in Patients with Moderate to Severe Infection. Heart & Lung. 2020.
75. Ghasemiyeh P, Mohammadi-Samani S. The necessity of early anti-inflammatory therapy initiation in cases with mild-to-moderate COVID-19: A personal experience from an attending pharmacist and his resident. Acta Biomed. 2021;92(3).