Literature Cited
Abrams, P.A. & Rowe, L. (1996). The Effects of Predation on the Age and
Size of Maturity of Prey. Evolution , 50, 1052–1061.
Acharya, L. (1995). Sex-biased predation on moths by insectivorous bats.Anim. Behav. , 49, 1461–1468.
Adamo, S.A., Easy, R.H., Kovalko, I., MacDonald, J., McKeen, A.,
Swanburg, T., et al. (2017). Predator exposure-induced
immunosuppression: trade-off, immune redistribution or immune
reconfiguration? J. Exp. Biol. , 220, 868–875.
Aeby, G.S. (1998). A digenean metacercaria from the reef coral, Porites
compressa, experimentally identified as Podocotyloides stenometra.J. Parasitol. , 1259–1261.
Agboton, B.V., Hanna, R., Onzo, A., Vidal, S. & von Tiedemann, A.
(2013). Interactions between the predatory mite Typhlodromalus aripo and
the entomopathogenic fungus Neozygites tanajoae and consequences for the
suppression of their shared prey/host Mononychellustanajoa. Exp.
Appl. Acarol. , 60, 205–217.
Anderson, R.M. & May, R.M. (1979). Population biology of infectious
diseases: Part I. Nature , 280, 361–367.
Apfelbach, R., Blanchard, C.D., Blanchard, R.J., Hayes, R.A. &
McGregor, I.S. (2005). The effects of predator odors in mammalian prey
species: A review of field and laboratory studies. Neurosci.
Biobehav. Rev. , Defensive Behavior, 29, 1123–1144.
Baverstock, J., Baverstock, K.E., Clark, S.J. & Pell, J.K. (2008).
Transmission of Pandora neoaphidis in the presence of co-occurring
arthropods. J. Invertebr. Pathol. , Special Issue for SIP 2008,
98, 356–359.
Baverstock, J., Clark, S.J., Alderson, P.G. & Pell, J.K. (2009).
Intraguild interactions between the entomopathogenic fungus Pandora
neoaphidis and an aphid predator and parasitoid at the population scale.J. Invertebr. Pathol. , 102, 167–172.
Ben-Ami, F. (2019). Host Age Effects in Invertebrates: Epidemiological,
Ecological, and Evolutionary Implications. Trends Parasitol. , 35,
466–480.
Bostock, R.M. (2005). SIGNAL CROSSTALK AND INDUCED RESISTANCE:
Straddling the Line Between Cost and Benefit. Annu. Rev.
Phytopathol. , 43, 545–80.
Brown, J.S., Kotler, B.P., Smith, R.J. & Wirtz, W.O. (1988). The
effects of owl predation on the foraging behavior of heteromyid rodents.Oecologia , 76, 408–415.
Burnham, K.P. & Anderson, D.R. (2002). Model selection and
multimodal inference: A practical information-theoretic approach .
Springer, New York.
Buss, N. & Hua, J. (2018). Parasite susceptibility in an amphibian host
is modified by salinization and predators. Environ. Pollut. , 236,
754–763.
Byers, J.E., Malek, A.J., Quevillon, L.E., Altman, I. & Keogh, C.L.
(2015). Opposing selective pressures decouple pattern and process of
parasitic infection over small spatial scale. Oikos , 124,
1511–1519.
Cáceres, C.E., Knight, C.J. & Hall, S.R. (2009). Predator–spreaders:
predation can enhance parasite success in a planktonic host–parasite
system. Ecology , 90, 2850–2858.
Chacón, J.M., Landis, D.A. & Heimpel, G.E. (2008). Potential for biotic
interference of a classical biological control agent of the soybean
aphid. Biol. Control , 46, 216–225.
Chailleux, A., Droui, A., Bearez, P. & Desneux, N. (2017). Survival of
a specialist natural enemy experiencing resource competition with an
omnivorous predator when sharing the invasive prey Tuta absoluta.Ecol. Evol. , 7, 8329–8337.
Chantanao, A. & Jensen, H.J. (1969). Saprozoic nematodes as carriers
and disseminators of plant pathogenic bacteria. J. Nematol. , 1,
216.
Cinel, S.D., Hahn, D.A. & Kawahara, A.Y. (2020). Predator-induced
stress responses in insects: A review. J. Insect Physiol. , 122,
104039.
Clay, P.A., Cortez, M.H. & Duffy, M.A. (2021). Dose relationships can
exacerbate, mute, or reverse the impact of heterospecific host density
on infection prevalence. Ecology , 102, e03422.
Clemens, E. & Brandt, M.E. (2015). Multiple mechanisms of transmission
of the Caribbean coral disease white plague. Coral Reefs , 34,
1179–1188.
Clinchy, M., Sheriff, M.J. & Zanette, L.Y. (2013). Predator-induced
stress and the ecology of fear. Funct. Ecol. , 27, 56–65.
Clinchy, M., Zanette, L., Charlier, T.D., Newman, A.E.M., Schmidt, K.L.,
Boonstra, R., et al. (2011). Multiple measures elucidate
glucocorticoid responses to environmental variation in predation threat.Oecologia , 166, 607–614.
Cornelissen, T., Wilson Fernandes, G. & Vasconcellos-Neto, J. (2008).
Size does matter: variation in herbivory between and within plants and
the plant vigor hypothesis. Oikos , 117, 1121–1130.
Cossentine, J.E. (2009). The parasitoid factor in the virulence and
spread of lepidopteran baculoviruses. Virol. Sin. , 24, 305–314.
Creel, S. & Christianson, D. (2008). Relationships between direct
predation and risk effects. Trends Ecol. Evol. , 23, 194–201.
Creel, S., Schuette, P. & Christianson, D. (2014). Effects of predation
risk on group size, vigilance, and foraging behavior in an African
ungulate community. Behav. Ecol. , 25, 773–784.
Daversa, D.R., Hechinger, R.F., Madin, E. & Fenton, A. (2019). Beyond
the ecology of fear: non-lethal effects of predators are strong whereas
those of parasites are diverse. bioRxiv , 766477.
Dietrich, R., Ploss, K. & Heil, M. (2005). Growth responses and fitness
costs after induction of pathogen resistance depend on environmental
conditions. Plant Cell Environ. , 28, 211–222.
Dobson, A.P. (1989). The population biology of parasitic helminths in
animal populations. In: Applied Mathematical Ecology . Springer,
New York, pp. 145–175.
Donnelly, C.A., Wei, G., Johnston, W.T., Cox, D.R., Woodroffe, R.,
Bourne, F.J., et al. (2007). Impacts of widespread badger culling
on cattle tuberculosis: concluding analyses from a large-scale field
trial. Int. J. Infect. Dis. , 11, 300–308.
Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, F.J., Cheeseman, C.L.,
Clifton-Hadley, R.S., et al. (2006). Positive and negative
effects of widespread badger culling on tuberculosis in cattle.Nature , 439, 843.
Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, J., Gettinby, G., Le
Fevre, A.M., et al. (2003). Impact of localized badger culling on
tuberculosis incidence in British cattle. Nature , 426, 834.
Duffy, M.A. (2009). Staying alive: The post-consumption fate of parasite
spores and its implications for disease dynamics. Limnol.
Oceanogr. , 54, 770–773.
Duffy, M.A., Caceres, C.E. & Hall, S.R. (2019). Healthy herds or
predator spreaders? Insights from the plankton into how predators
suppress and spread disease. In: Wildlife Disease Ecology: Linking
Theory to Data and Application . Cambridge University Press, Cambridge,
pp. 458–479.
Duffy, M.A., García-Robledo, C., Gordon, S.P., Grant, N.A., Green, D.A.,
Kamath, A., et al. (2021). Model systems in ecology, evolution,
and behavior: A call for diversity in our model systems and discipline.Am. Nat. , 198, 53–68.
Duffy, M.A., Housley, J.M., Penczykowski, R.M., Caceres, C.E. & Hall,
S.R. (2011). Unhealthy herds: indirect effects of predators enhance two
drivers of disease spread. Funct. Ecol. , 25, 945–953.
Dwyer, G., Elkinton, J.S. & Buonaccorsi, J.P. (1997). Host
heterogeneity in susceptibility and disease dynamics: Tests of a
mathematical model. Am. Nat. , 150, 685–707.
Elderd, B.D. (2018). Modeling insect epizootics and their
population-level consequences. In: Ecology of Invertebrate
Diseases (eds. Hajek, A.E. & Shapiro-Ilan, D.). Wiley.
Elderd, B.D. (2019). Bottom-up trait-mediated indirect effects decrease
pathogen transmission in a tritrophic system. Ecology , 100,
e02551.
Elderd, B.D. & Dwyer, G. (2020). Population structure and disease
spread in insect baculoviruses. In: Wildlife diseases: Linking
theory to data and application (eds. Wilson, K., Fenton, A. &
Tompkins, D.). Cambridge University Press.
Flick, A.F., Acevedo, M.A. & Elderd, B.D. (2016). The negative effects
of pathogen-infected prey on predators: A meta-analysis. Oikos ,
125, 1554–1560.
Flick, A.F., Coudron, T. & Elderd, B.D. (2020). Intraguild predation
increases pathogen transmission in a herbivore host and decreases
predator fitness. Oecologia , 193, 789–799.
Garvey, M., Creighton, C. & Kaplan, I. (2020a). Pepper domestication
enhances parasitoid recruitment to herbivore-damaged plants.Arthropod-Plant Interact. , 14, 695–703.
Garvey, M.A., Creighton, J.C. & Kaplan, I. (2020b). Tritrophic
interactions reinforce a negative preference–performance relationship
in the tobacco hornworm (Manduca sexta). Ecol. Entomol. , 45,
783–794.
Geervliet, J.B.F., Vet, L.E.M. & Dicke, M. (1996). Innate responses of
the parasitoidsCotesia glomerata andC. rubecula (Hymenoptera:
Braconidae) to volatiles from different plant-herbivore complexes.J. Insect Behav. , 9, 525–538.
Gignoux-Wolfsohn, S.A., Marks, C.J. & Vollmer, S.V. (2012). White Band
Disease transmission in the threatened coral, Acropora cervicornis.Sci. Rep. , 2, 804.
Gotelli, N.J. & Ellison, A.M. (2004). A primer of ecological
statstics . Sinauer Associates.
Gwynne, D.T. (1987). Sex-biased predation and the risky mate-locating
behaviour of male tick-tock cicadas (Homoptera: Cicadidae). Anim.
Behav. , 35, 571–576.
Hamilton, D.R. (1974). Immunosuppressive effects of predator induced
stress in mice with acquired immunity to Hymenolepis nana. J.
Psychosom. Res. , 18, 143–150.
Han, B.A., Searle, C.L. & Blaustein, A.R. (2011). Effects of an
infectious fungus, Batrachochytrium dendrobatidis, on amphibian
predator-prey interactions. PLoS One , 6, e16675.
Harrison, A., Scantlebury, M. & Montgomery, W.I. (2010). Body mass and
sex-biased parasitism in wood mice Apodemus sylvaticus. Oikos ,
119, 1099–1104.
Hawlena, D., Abramsky, Z. & Bouskila, A. (2010). Bird predation alters
infestation of desert lizards by parasitic mites. Oikos , 119,
730–736.
Hilborn, R. & Mangel, M. (1997). The ecological detective:
Confronting models with data . Princeton University Press, Princeton,
NJ.
Hobbs, N.T. & Hooten, M.B. (2015). Bayesian models: A statistical
primer for ecologists . Princeton University Press.
Hoffland, E., Niemann, G.J., Van Pelt, J.A., Pureveen, J.B.M., Eijkel,
G.B., Boon, J.J., et al. (1996). Relative growth rate correlates
negatively with pathogen resistance in radish: the role of plant
chemistry. Plant Cell Environ. , 19, 1281–1290.
Holt, R.D. & Roy, M. (2007). Predation can increase the prevalence of
infectious disease. Am. Nat. , 169, 690–699.
Hudson, P.J., Dobson, A.P. & Newborn, D. (1992). Do parasites make prey
vulnerable to predation? Red grouse and parasites. J. Anim.
Ecol. , 61, 681–692.
Inouye, B.D. (2001). Response surface experimental designs for
investigating interspecific competition. Ecology , 82, 2696–2706.
Johnson, P.T., Dobson, A., Lafferty, K.D., Marcogliese, D.J., Memmott,
J., Orlofske, S.A., et al. (2010). When parasites become prey:
ecological and epidemiological significance of eating parasites.Trends Ecol. Evol. , 25, 362–371.
Johnson, P.T., Stanton, D.E., Preu, E.R., Forshay, K.J. & Carpenter,
S.R. (2006). Dining on disease: how interactions between infection and
environment affect predation risk. Ecology , 87, 1973–1980.
Jones, E.I. & Dornhaus, A. (2011). Predation risk makes bees reject
rewarding flowers and reduce foraging activity. Behav. Ecol.
Sociobiol. , 65, 1505–1511.
Kaneko, S. (2006). Predator and parasitoid attacking ant-attended
aphids: effects of predator presence and attending ant species on
emerging parasitoid numbers. Ecol. Res. , 22, 451.
Karban, R. (2015). Plant sensing and communication. In: Plant
Sensing and Communication . University of Chicago Press.
Kester, K.M. & Barbosa, P. (1994). Behavioral responses to host
foodplants of two populations of the insect parasitoid Cotesia
congregata (Say). Oecologia , 99, 151–157.
King, R.B. (2002). Predicted and observed maximum prey size - snake size
allometry. Funct. Ecol. , 16, 766–772.
Koprivnikar, J. & Urichuk, T.M. (2017). Time-lagged effect of predators
on tadpole behaviour and parasite infection. Biol. Lett. , 13,
20170440.
Kortet, R., Hedrick, A.V. & Vainikka, A. (2010). Parasitism, predation
and the evolution of animal personalities. Ecol. Lett. , 13,
1449–1458.
Krasnov, B.R., Morand, S., Hawlena, H., Khokhlova, I.S. & Shenbrot,
G.I. (2005). Sex-biased parasitism, seasonality and sexual size
dimorphism in desert rodents. Oecologia , 146, 209–217.
Kuris, A.M. (2003). Evolutionary ecology of trophically transmitted
parasites. J. Parasitol. , 89, S96–S100.
Kuris, A.M. (2005). Trophic transmission of parasites and host behavior
modification. Behav. Processes , 68, 215–217.
Lafferty, K.D. (1999). The evolution of trophic transmission.Parasitol. Today , 15, 111–115.
Lin, G., Guertin, C., Di Paolo, S.-A., Todorova, S. & Brodeur, J.
(2019). Phytoseiid predatory mites can disperse entomopathogenic fungi
to prey patches. Sci. Rep. , 9, 19435.
Lodé, T., Holveck, M.-J., Lesbarreres, D. & Pagano, A. (2004).
Sex–biased predation by polecats influences the mating system of frogs.Proc. R. Soc. Lond. B Biol. Sci. , 271, S399–S401.
Lopez, L.K. & Duffy, M.A. (2021). Mechanisms by which predators mediate
host–parasite interactions in aquatic systems. Trends
Parasitol. , S1471492221001628.
de Lourdes Ramírez-Ahuja, M., Rodríguez-Leyva, E., Lomeli-Flores, J.R.,
Torres-Ruiz, A. & Guzmán-Franco, A.W. (2017). Evaluating combined use
of a parasitoid and a zoophytophagous bug for biological control of the
potato psyllid, Bactericera cockerelli. Biol. Control , 106,
9–15.
Martin, L.B. (2009). Stress and immunity in wild vertebrates: timing is
everything. Gen. Comp. Endocrinol. , 163, 70–76.
Mauck, K.E., Smyers, E., De Moraes, C.M. & Mescher, M.C. (2015). Virus
infection influences host plant interactions with non-vector herbivores
and predators. Funct. Ecol. , 29, 662–673.
McCurdy, D.G., Shutler, D., Mullie, A. & Forbes, M.R. (1998).
Sex-biased parasitism of avian hosts: relations to blood parasite taxon
and mating system. Oikos , 303–312.
Middlemis Maher, J., Werner, E.E. & Denver, R.J. (2013). Stress
hormones mediate predator-induced phenotypic plasticity in amphibian
tadpoles. Proc. R. Soc. B Biol. Sci. , 280, 20123075.
Navarro, C., De Lope, F., Marzal, A. & Møller, A.P. (2004). Predation
risk, host immune response, and parasitism. Behav. Ecol. , 15,
629–635.
Ng, W.H., Myers, C.R., McArt, S.H. & Ellner, S.P. (2022). Pathogen
transport amplifies or dilutes disease transmission depending on the
host dose-response relationship. Ecol. Lett. , 25, 453–465.
Nilsson, P.A. & Brönmark, C. (2000). Prey vulnerability to a gape-size
limited predator: behavioural and morphological impacts on northern pike
piscivory. Oikos , 88, 539–546.
Nykyri, J., Fang, X., Dorati, F., Bakr, R., Pasanen, M., Niemi, O.,et al. (2014). Evidence that nematodes may vector the soft
rot-causing enterobacterial phytopathogens. Plant Pathol. , 63,
747–757.
Ostfeld, R.S. & Holt, R.D. (2004). Are predators good for your health?
Evaluating evidence for top-down regulation of zoonotic disease
reservoirs. Front. Ecol. Environ. , 2, 13–20.
Otti, O., Gantenbein-Ritter, I., Jacot, A. & Brinkhof, M.W. (2012).
Immune response increases predation risk. Evol. Int. J. Org.
Evol. , 66, 732–739.
Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D. & Dobson, A.P.
(2003). Keeping the herds healthy and alert: implications of predator
control for infectious disease. Ecol. Lett. , 6, 797–802.
Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S.M. & Moestl, E.
(2005). Stress hormones in mammals and birds: comparative aspects
regarding metabolism, excretion, and noninvasive measurement in fecal
samples. Ann. N. Y. Acad. Sci. , 1040, 162–171.
Preisser, E.L., Orrock, J.L. & Schmitz, O.J. (2007). Predator hunting
mode and habitat domain alter nonconsumptive effects in predator–prey
interactions. Ecology , 88, 2744–2751.
Price, P.W. (1975). Reproductive Strategies of Parasitoids. In:Evolutionary Strategies of Parasitic Insects and Mites (ed.
Price, P.W.). Springer US, Boston, MA, pp. 87–111.
Ramirez, R.A. & Snyder, W.E. (2009). Scared sick? Predator–pathogen
facilitation enhances exploitation of a shared resource. Ecology ,
90, 2832–2839.
Reilly, J.R. & Hajek, A.E. (2012). Prey-processing by avian predators
enhances virus transmission in the gypsy moth. Oikos , 121,
1311–1316.
Reimchen, T.E. & Nosil, P. (2001). Ecological causes of sex-biased
parasitism in threespine stickleback. Biol. J. Linn. Soc. , 73,
51–63.
Relyea, R.A. (2007). Getting out alive: how predators affect the
decision to metamorphose. Oecologia , 152, 389–400.
Renzi, J.J., Shaver, E.C., Burkepile, D.E. & Silliman, B.R. (2022). The
role of predators in coral disease dynamics. Coral Reefs .
Richards, R.L., Drake, J.M. & Ezenwa, V.O. (2022). Do predators keep
prey healthy or make them sicker? A meta-analysis. Ecol. Lett. ,
25, 278–294.
de Rijk, M., Dicke, M. & Poelman, E.H. (2013). Foraging behaviour by
parasitoids in multiherbivore communities. Anim. Behav. , 85,
1517–1528.
Rivera, N.A., Brandt, A.L., Novakofski, J.E. & Mateus-Pinilla, N.E.
(2019). Chronic Wasting Disease In Cervids: Prevalence, Impact And
Management Strategies. Vet. Med. Res. Rep. , 10, 123–139.
Roy, H.E., Pell, J.K. & Alderson, P.G. (2001). Targeted dispersal of
the aphid pathogenic fungus Erynia neoaphidis by the aphid predator
Coccinella septempunctata. Biocontrol Sci. Technol. , 11, 99–110.
Sánchez, C.A., Becker, D.J., Teitelbaum, C.S., Barriga, P., Brown, L.M.,
Majewska, A.A., et al. (2018). On the relationship between body
condition and parasite infection in wildlife: a review and
meta-analysis. Ecol. Lett. , 21, 1869–1884.
Schmitz, O.J., Beckerman, A.P. & O’Brien, K.M. (1997). Behaviorally
mediated trophic cascades: effects of predation risk on food web
interactions. Ecology , 78, 1388–1399.
Schmitz, O.J., Hambäck, P.A. & Beckerman, A.P. (2000). Trophic cascades
in terrestrial systems: a review of the effects of carnivore removals on
plants. Am. Nat. , 155, 141–153.
Smith, J.L., De Moraes, C.M. & Mescher, M.C. (2009). Jasmonate-and
salicylate-mediated plant defense responses to insect herbivores,
pathogens and parasitic plants. Pest Manag. Sci. Former. Pestic.
Sci. , 65, 497–503.
Stephenson, J.F., Van Oosterhout, C., Mohammed, R.S. & Cable, J.
(2015). Parasites of Trinidadian guppies: evidence for sex-and
age-specific trait-mediated indirect effects of predators.Ecology , 96, 489–498.
Stout, M.J., Thaler, J.S. & Thomma, B.P. (2006). Plant-mediated
interactions between pathogenic microorganisms and herbivorous
arthropods. Annu Rev Entomol , 51, 663–689.
Strandin, T., Babayan, S.A. & Forbes, K.M. (2018). Reviewing the
effects of food provisioning on wildlife immunity. Philos. Trans.
R. Soc. B Biol. Sci. , 373, 20170088.
Strauss, A.T., Shocket, M.S., Civitello, D.J., Hite, J.L., Penczykowski,
R.M., Duffy, M.A., et al. (2016). Habitat, predators, and hosts
regulate disease in Daphnia through direct and indirect pathways.Ecol. Monogr. , 86, 393–411.
Szuroczki, D. & Richardson, J.M. (2012). The behavioral response of
larval amphibians (Ranidae) to threats from predators and parasites.PLoS One , 7, e49592.
Tait, A.S., Butts, C.L. & Sternberg, E.M. (2008). The role of
glucocorticoids and progestins in inflammatory, autoimmune, and
infectious disease. J. Leukoc. Biol. , 84, 924–931.
Thaler, J.S., McArt, S.H. & Kaplan, I. (2012). Compensatory mechanisms
for ameliorating the fundamental trade-off between predator avoidance
and foraging. Proc. Natl. Acad. Sci. , 109, 12075–12080.
Travis, J. (2006). Is It What We Know or Who We Know? Choice of Organism
and Robustness of Inference in Ecology and Evolutionary Biology:
(American Society of Naturalists Presidential Address). Am. Nat. ,
167, 303–314.
Turchin, P. (2003). Complex population dynamics: A
theoretical/empirical synthesis . Princeton University Press.
Vance-Chalcraft, H.D., Rosenheim, J.A., Vonesh, J.R., Osenberg, C.W. &
Sih, A. (2007). The Influence of Intraguild Predation on Prey
Suppression and Prey Release: A Meta-Analysis. Ecology , 88,
2689–2696.
VanderWaal, K.L. & Ezenwa, V.O. (2016). Heterogeneity in pathogen
transmission: mechanisms and methodology. Funct. Ecol. , 30,
1606–1622.
Viney, M.E. & Riley, E.M. (2014). From Immunology to Eco-Immunology:
More than a New Name. In: Eco-immunology: Evolutive Aspects and
Future Perspectives (eds. Malagoli, D. & Ottaviani, E.). Springer
Netherlands, Dordrecht, pp. 1–19.
Vlot, A.C., Dempsey, D.A. & Klessig, D.F. (2009). Salicylic acid, a
multifaceted hormone to combat disease. Annu. Rev. Phytopathol. ,
47, 177–206.
Wale, N. & Duffy, M.A. (2021). The use and underuse of model systems in
infectious disease ecology and evolutionary biology. Am. Nat. ,
198, 69–92.
Weinstein, S.B., Buck, J.C. & Young, H.S. (2018a). A landscape of
disgust. Science , 359, 1213–1214.
Weinstein, S.B., Moura, C.W., Mendez, J.F. & Lafferty, K.D. (2018b).
Fear of feces? Tradeoffs between disease risk and foraging drive animal
activity around raccoon latrines. Oikos , 127, 927–934.
Wielkopolan, B., Jakubowska, M. & Obrępalska-Stęplowska, A. (2021).
Beetles as Plant Pathogen Vectors. Front. Plant Sci. , 12.
Yin, M., Laforsch, C., Lohr, J.N. & Wolinska, J. (2011).
Predator-Induced Defense Makes Daphnia More Vulnerable to Parasites.Evolution , 65, 1482–1488.
Zhang, Y.-X., Sun, L., Lin, G.-Y., Lin, J.-Z., Chen, X., Ji, J.,et al. (2015). A novel use of predatory mites for dissemination
of fungal pathogen for insect biocontrol: The case of Amblyseius
swirskii and Neoseiulus cucumeris (Phytoseiidae) as vectors of Beauveria
bassiana against Diaphorina citri (Psyllidae). Syst. Appl.
Acarol. , 20, 177–187.
Figure 1. Six mechanisms of predator spreading. The main
mechanisms by which predators facilitate parasite transmission and
infection, discussed in detail in the main text, and depicted here.
Created with BioRender.com.
Figure 2. Dose-infectivity relationships (a) can interact with
partial predation (b) and whether parasites remain viable after passing
through predators (c) to influence predator spreading. a) Infection
rate generally increases with increasing parasite dose, with a
relationship that can be accelerating, linear, or decelerating.
Moreover, as the curve shows, a sigmoidal dose-infectivity relationship
can appear to be accelerating, linear, or decelerating depending on the
particular range of parasite doses that are considered. b) In the case
of partial predation predator spreading, the impact of the predator on
parasitism should depend on the nature of the dose-infectivity
relationship. A partial predator (such as a corallivorous fish) that
carries a moderate dose of the parasite between predators should be a
very effective predator spreader for parasites with a low minimum
infectious dose (and correspondingly low dose yielding 50% infections,
known as the ID50 and indicated by a star on the
figure), but not for those with a high minimum infectious dose (and
ID50). c) In cases where parasites pass through the
predator’s digestive tract, we expect there to be an interaction between
the density of fecal material and the dose-infectivity curve: if there
is a rapidly saturating dose-infectivity curve (and low
ID50; dotted line) parasites passing through the
digestive tract of a predator with diffuse feces (represented by the
feces in the lower left of the figure) that spreads over a wide area
should lead to substantial predator spreading. However, if there is an
accelerating dose-infectivity curve and high ID50 (solid
curve) predator spreading might be most pronounced when predators
produce compact feces that contain a large number of parasites in
comparison to the diffuse feces; in these cases, the predator spreading
should be more localized. Created with BioRender.com.
Figure 3. The impact of predator preference on infection levels
depends on the relationship between the trait (in this example, prey
size) and infection likelihood and between the trait and predation
risk. If predators prefer the type of prey that is more likely to be
infected, that should reduce parasitism, as shown with the blue curves
in a & b; if predators prefer the type of prey that is less likely to
be infected, that should drive predator spreading, as shown with the red
curves. Created with BioRender.com.