References:
1. Anderson, J.M., A. Rodriguez, and D.T. Chang, Foreign body reaction to biomaterials. Seminars in immunology, 2008. 20 (2): p. 86-100.
2. Steckiewicz, R., et al., Morphometric parameters of cardiac implantable electronic device (CIED) pocket walls observed on device replacement. Folia Morphol, 2017. 76 (4): p. 675-681-675-681.
3. Perry, L., et al., Explanted Pacemakers: Observations of the Long-term Foreign Body Response. Journal of Undergraduate Research in Bioengineering, 2007(7): p. 13-21.
4. Maytin, M., R.M. John, and L.M. Epstein, Device Pocket Scar Predicts Transvenous Lead Extraction Difficulty. Journal of Innovations in Cardiac Rhythm Management, 2015. 6 (11): p. 2173-2177.
5. Biefer, H.R., et al., Generator pocket adhesions of cardiac leads: classification and correlation with transvenous lead extraction results. Pacing Clin Electrophysiol, 2013. 36 (9): p. 1111-6.
6. Kusumoto, F.M., et al., 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm, 2017. 14 (12): p. e503-e551.
7. Borleffs, C.J., et al., Recurrent implantable cardioverter-defibrillator replacement is associated with an increasing risk of pocket-related complications. Pacing Clin Electrophysiol, 2010.33 (8): p. 1013-9.
8. Baddour, L.M., et al., Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation, 2010.121 (3): p. 458-77.
9. Cleland, J.G., et al., The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med, 2005.352 (15): p. 1539-49.
10. Beck, H., et al., 50th Anniversary of the first successful permanent pacemaker implantation in the United States: historical review and future directions. Am J Cardiol, 2010. 106 (6): p. 810-8.
11. Tarakji, K.G., et al., Cardiac Implantable Electronic Device Infection in Patients at Risk. Arrhythm Electrophysiol Rev, 2016.5 (1): p. 65-71.
12. Robotti, F., et al., Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials, 2020. 229 : p. 119583.
13. Polyzos, K.A., A.A. Konstantelias, and M.E. Falagas, Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis. Europace, 2015. 17 (5): p. 767-77.
14. Poole, J.E., et al., Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry.Circulation, 2010. 122 (16): p. 1553-61.
15. Olsen, T., et al., Incidence of device-related infection in 97 750 patients: clinical data from the complete Danish device-cohort (1982-2018). Eur Heart J, 2019. 40 (23): p. 1862-1869.
16. Wilkoff, B.L., Infections associated with cardiac implantable electronic devices are misunderstood. Texas Heart Institute Journal, 2011. 38 (4): p. 353-354.
17. Cornwell, K.G., A. Landsman, and K.S. James, Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg, 2009. 26 (4): p. 507-23.
18. Brown-Etris, M., W. Cutshall, and M. Hiles, A New Biomaterial Derived from Small Intestine Submucosa and Developed into a Wound Matrix Device. Wounds, 2002. 14 (4): p. 150-166.
19. Sohail, M.R., et al., Preclinical evaluation of efficacy and pharmacokinetics of gentamicin containing extracellular-matrix envelope. Pacing Clin Electrophysiol, 2020. 43 (3): p. 341-349.
20. Brown, B.N. and S.F. Badylak, Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res, 2014. 163 (4): p. 268-85.
21. Hodde, J.P., et al., Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium, 2001. 8 (1): p. 11-24.
22. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 2009. 5 (1): p. 1-13.
23. Piterina, A.V., et al., ECM-based materials in cardiovascular applications: Inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci, 2009. 10 (10): p. 4375-417.
24. Brown, B.N., B.M. Sicari, and S.F. Badylak, Rethinking regenerative medicine: a macrophage-centered approach. Frontiers in immunology, 2014. 5 : p. 510-510.
25. Lin, X., et al., Small intestinal submucosa-derived extracellular matrix bioscaffold significantly enhances angiogenic factor secretion from human mesenchymal stromal cells. Stem Cell Res Ther, 2015. 6 : p. 164.
26. Dziki, J.L., et al., Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J Biomed Mater Res A, 2017.105 (1): p. 138-147.
27. Badylak, S.F. and T.W. Gilbert, Immune response to biologic scaffold materials. Semin Immunol, 2008. 20 (2): p. 109-16.
28. Brown, B.N., et al., Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine.Biomaterials, 2012. 33 (15): p. 3792-802.
29. Brown, B.N., et al., Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater, 2012. 8 (3): p. 978-87.
30. Fuertes, B., et al., Pacemaker lead displacement: mechanisms and management. Indian pacing and electrophysiology journal, 2003.3 (4): p. 231-238.
31. Ip, J.E., L. Xu, and B.B. Lerman, Differences between cardiac implantable electronic device envelopes evaluated in an animal model. J Cardiovasc Electrophysiol, 2021. 32 (5): p. 1346-1354.
32. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8 (12): p. 958-69.
33. Wynn, T.A. and K.M. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 2016. 44 (3): p. 450-462.
34. Sicari, B.M., et al., The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials, 2014. 35 (30): p. 8605-12.
35. Shi, H.-X., et al., The Anti-Scar Effects of Basic Fibroblast Growth Factor on the Wound Repair In Vitro and In Vivo. PLOS ONE, 2013.8 (4): p. e59966.
36. Mosala Nezhad, Z., et al., Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interactive cardiovascular and thoracic surgery, 2016. 22 (6): p. 839-850.
37. Maxson, S., et al., Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med, 2012. 1 (2): p. 142-9.
38. Voytik-Harbin, S.L., et al., Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997.67 (4): p. 478-91.
39. Londono, R. and S.F. Badylak, Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng, 2015. 43 (3): p. 577-92.
40. Reing, J.E., et al., Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A, 2009. 15 (3): p. 605-14.
41. Boyd, W.D., et al., Pericardial reconstruction using an extracellular matrix implant correlates with reduced risk of postoperative atrial fibrillation in coronary artery bypass surgery patients. Heart Surg Forum, 2010. 13 (5): p. E311-6.
42. Stelly, M. and T.C. Stelly, Histology of CorMatrix Bioscaffold 5 Years After Pericardial Closure. The Annals of Thoracic Surgery, 2013. 96 (5): p. e127-e129.
43. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009. 37 (5): p. 1528-42.
44. Badylak, S.F., Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng, 2014. 42 (7): p. 1517-27.
45. Gong, D., et al., TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology, 2012.13 (1): p. 31.