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Abstract

Computational models are increasingly used to investigate and predict the complex dynamics of biologi-
cal and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully)
known, which would necessitate learning the system dynamics directly from, often limited and noisy, ob-
served data. On the other hand, when expensive models are available, systematic and efficient quantification5

of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages
the notion of flow-map (de)compositions to present a framework that can address both of these challenges
via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-
driven flow-map models seek to directly learn the integration operators of the governing differential equations
in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a10

flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dy-
namics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations.
We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging.
The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture
bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis15

reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and
optimization of bioprocesses and integrated biomanufacturing systems.

Keywords: Flow-map decomposition; Probabilistic surrogate modeling; Discovery of nonlinear dynamics;
Uncertainty quantification; Polynomial chaos Kriging20
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1. Introduction

Computational models have become indispensable tools for understanding the complex behavior of bi-
ological and biochemical systems towards design and optimization of bioprocesses and integrated bioman-
ufacturing systems [2]. Recently, there has been a growing interest in data-driven methods for modeling
the uncertain and nonlinear dynamics of biochemical systems, as these models constitute the cornerstone of25

various model-based analyses and decision-making tasks such as experiment design, hypothesis testing and
parameter inference [20, 22, 27]. Data-driven modeling is especially useful when it is formidable to derive
first-principles descriptions for systems whose complex behavior can span over multiple length- and time-
scales. Data-driven models have shown promise for inferring the dynamics of cellular systems and metabolic
networks (e.g., [60, 14]). Hybrid models (aka gray-box models) that combine physics-based models with30

data-driven descriptions of unknown or hard-to-model phenomena have also proven useful for describing the
complex behavior of biochemical systems [16, 75, 63, 80]. In this work, we focus on data-driven discovery
of dynamical systems, whereby the goal is to learn directly the governing equations from system observa-
tions. A class of data-driven discovery methods for unknown systems relies on basic assumptions about the
structure of the underlying equations [6]. To this end, a popular technique is based on sparse identification35

from dictionaries of possible governing terms [12, 9], which has been shown to be particularly useful when
limited system observations are available. On the other hand, non-parametric modeling approaches relax the
necessity of using a library of candidate terms [25]. Another class of methods for data-driven reconstruction
of dynamics is based on dynamic mode decomposition [31, 59], which approximates the eigenvalues and
eigenvectors of the Koopman operator [77] that describes the dynamics of nonlinear systems.40

Although inception of the field of nonlinear system identification dates back to few decades ago [62], the
advent of machine learning, in particular deep learning, for characterizing complex input-output relationships
has reinvigorated the interest in this area. Most notably, physics-informed neural networks [53] and dynamics
reconstruction via neural networks under noisy data [56] have shown promise for data-driven modeling of
nonlinear dynamical systems. Recently, Qin et al. [51, 50] proposed a deep learning-based approach for data-45

driven approximation of integration operator of differential equations from observations of state variables.
The usefulness of this approach for discovery of dynamics of biological systems has been demonstrated on
several benchmark problems in [68], mainly since it removes the necessity of assumptions about the dynamic
model structure.

Data-driven discovery methods can also be used for model-based uncertainty quantification (UQ) appli-50

cations that rely on expensive-to-evaluate computational models. Predictions of the behavior of biochemical
systems are generally subject to various sources of uncertainty due to unknown model structure, parame-
ters, and/or initial and boundary conditions. Systematic and accurate quantification of the effects of these
uncertainties on predictions of quantities of interest (QoIs) is crucial when using models for decision-support
tasks. This has spurred development of a plethora of set-based [66] and probabilistic [39, 64] methods for55

forward and inverse UQ problems (e.g., [30, 57, 74, 37, 44]). However, the most commonly used UQ methods
rely on Monte Carlo sampling [10], which can be intractable for expensive computational models of biochem-
ical systems, especially when models consist of a large number of differential equations and/or have a large
number of uncertain inputs.

Surrogate modeling is being increasingly used to facilitate complex UQ analyses that would otherwise be60

computationally prohibitive. The key notion in surrogate modeling is to construct a data-driven mapping
between inputs to a system and the QoIs in a non-intrusive manner, in which the “data generating pro-
cess,” e.g., a high-fidelity model, is treated as a black-box to generate as few training samples as possible
[69]. Such a data-driven representation can be used as a computationally efficient surrogate for expensive
computational models in order to predict the QoIs as a function of inputs. A variety of surrogate modeling65

techniques such a generalized and sparse polynomial chaos [79, 5], Kriging [13] and deep learning [72] have
been successfully applied to various biological and biochemical systems (e.g., [44, 67, 54, 58, 47]). Nonethe-
less, a critical challenge in the majority of these techniques arises from capturing the time-evolution of the
QoIs in an efficient manner. The most common approach, known as time-frozen surrogate modeling [48, 34],
for predicting the time-evolution of QoIs relies on constructing separate surrogate models for all time points70

at which the QoIs must be predicted. As such, the “time-frozen” approach can be an inflexible and inefficient
way of surrogate modeling for dynamical systems, especially in dynamic UQ and decision-making problems
that hinge on making predictions over an adaptive sequence of time instants.
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In this paper, we leverage the notion of flow-map (de)composition, as also investigated in [51, 50], for
data-efficient discovery of system dynamics from experimental observations or high-fidelity simulation data.75

Conceptually, a flow-map is an analytical operator that maps the current state and input of a system to a fu-
ture state based on exact integration of model equations over some specified time step. Numerical integration
schemes for ordinary differential equations in fact seek to numerically approximate flow-maps to compute the
time-evolution of state variables as a function of input variables. Here, we propose to approximate flow-maps
in a data-driven manner via non-intrusive surrogate modeling, such that the resulting data-driven flow-map80

is a surrogate for differential operators of the differential equations governing a dynamical system. Hence,
data-driven flow-map models are able to discover system dynamics irrespective of the unknown structure
of model equations. In addition, data-driven flow-map models can address the above-described challenge
of “time-frozen” approaches to surrogate modeling via circumventing the need for construction of separate
surrogate models at different time instants. This can be especially useful for fast UQ and optimization-85

based analyses of dynamical systems that hinge on repeated runs of expensive computational models over a
sequence of time instants.

We demonstrate the usefulness of data-driven flow-maps for discovery of system dynamics from data, as
well as for fast UQ applications based on expensive computational models. In this work, sparse polynomial
chaos Kriging [61] is used for data-driven approximation of flow-maps owing to its data efficiency, ability to90

approximate complex mappings and ability to quantify the uncertainty of model predictions. The versatility
of data-driven flow-maps is first demonstrated via the discovery of the transient behavior of benchmark
problems and a co-culture bioreactor using noisy data. Subsequently, we show how data-driven flow-maps
can speedup forward and inverse UQ analyses of a dynamic microbial electrosynthesis reactor, achieving up
to a 100-fold gain in computational speed.95

2. Methods

In this section, we present the idea of flow-map (de)composition for dynamical nonlinear systems. This
is followed by a discussion on the surrogate modeling technique and data generation strategies used in this
work for learning data-driven flow-map models.

2.1. Flow-map Compositions100

Consider a dynamical, time-invariant, nonlinear system described by

ds

dt
= f(s,x), s(t = 0) = s0, (1)

where s ∈ Rns is the vector of state variables with initial conditions s0, x ∈ Rnx is the vector of input
variables, and f(s,x) : Rns × Rnx → Rns is the vector of (possibly unknown) system equations; R denotes
the set of real numbers. Eq. (1) describes the time-evolution of the state, s, of the nonlinear system as a
function of the inputs x. Notice that in this work the inputs x can represent either model parameters, or
manipulated input variables to a biochemical system, as will be discussed later.105

A flow-map function is a mapping that predicts the transition of a dynamical system from the current
to future state [51]. We define a flow-map function Φδ as

s(δ;x) = Φδ(st, x), (2)

where st denotes the current state at time t and δ is the lag time in the system transition from the current
state st to the future state s. Given the current state of a system at time t, Φδ is in fact an analytical
operation based on exact integration of f , yielding the state after time δ

s(δ;x) = s(t;x) +

∫ t+δ

t

f(s(t′;x),x)dt′. (3)

Eq. (3) describes the one-step transition between the states of a system. The integral term that appears in
(3) can, subsequently, be considered as a flow-map residual, i.e., it represents the discrepancy between the
current and future set of states.
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The notion of flow-map compositions can be applied to compose a sequence of one-step transitions to
define state trajectories over time [51]. Once the δ-lag flow-map Φδ is established, it can be used to predict

states s at any time instant ∆ =
∑K

j=1 δj using a K-fold composition

Φ∆ = ΦδK ◦ · · · ◦ Φδ1 . (4)

In practice, the set of differential equations in Eq. (1) describing the system dynamics may not be known,
or, when known, their numerical solution may be expensive. In this paper, we aim to learn an approximate110

surrogate for the flow-map function in Eq. (2) from high-fidelity simulation or experimental data. Data-driven
flow-map models can be established from simulation data to provide an efficient surrogate for expensive
computational models of the form in Eq. (1) that, for example, rely on numerical integration of a large
number of highly nonlinear and stiff differential equations, as is commonly the case for complex biochemical
systems. Notice that in this case data-driven flow-map modeling can be viewed as approximating numerical115

time integrators of the differential equations in Eq. (1). Alternatively, in the absence of any knowledge
about the governing equations (i.e., functions f in Eq. (1)), flow-map models can be directly learned from
experimental observations in order to discover the unknown system dynamics. The main steps of data-
driven flow-map modeling are summarized as follows. First, observations of the state variables are collected
at several time instants either using highly-fidelity simulations, or via performing experiments. Notice that120

there is usually some degree of freedom in choosing the lag time δ in simulations, whereas the choice of δ
is often limited by how fast measurements can be acquired in experiments. Then, the observations of the
state trajectories over a sequence of discrete-time instants are used to train a surrogate for the flow-map in
a non-intrusive, “black-box” manner. The data-driven flow-map model will take the states sk, inputs xk,
and lag time δk at any discrete-time instant k as inputs to predict the future states sk+1 at the time instant125

k + 1. With a slight abuse of notation, we denote the data-driven approximation of the flow-map in Eq. (2)

by Φ̃(sk,xk, δk) : Rns × Rnx × R → Rns . Figure 1 shows how a data-driven flow-map model can be used
sequentially to predict the time-evolution of the states of a dynamical system. Notice that, at each time
instant k, the flow-map model essentially “integrates” the states forward in time by δk until the final time
is reached. Next, we discuss data-driven approximation of the flow-map.130

2.2. Data-driven Flow-maps

Here, we use sparse polynomial chaos Kriging (PCK) [61, 33] to learn a data-driven flow-map model

Φ̃(sk,xk, δk) for the dynamical system in Eq. (1). Deep learning methods have also been used for approx-
imating flow-maps for benchmark biological systems [68]. Yet, PCK combines the global approximation
capability of polynomial chaos expansions, extensively used for surrogate modeling of (bio)chemical systems135

(e.g., [17, 45, 40]), with the local interpolation scheme of Kriging (i.e., Gaussian processes (GP) [76]). The
polynomial structure of PCK makes its training data efficient, whereas Kriging offers the ability to quantify
the uncertainties of model predictions.

Let us denote the vector of states, input variables, and lag time by wk = [s⊤k x⊤
k δk]

⊤ ∈ RM , where
M = ns + nx + 1. We represent wk as a multivariate random variable W with a (known) joint probability
distribution fW , i.e., W ∼ fW . Notice that wk can be viewed as a realization of the random variable W ;
for notational convenience, we will drop the time index k in the remainder. The PCK approximation of the
flow-map is defined as

Y = Φ̃(w) =
∑

a∈NM

yaPa (W ) + σ2Z (w) , (5)

where Y ∈ Rns denotes the QoIs at k+1 that are typically a subset of the states s; Pa (W ) are multivariate
polynomial basis functions that are orthogonal with respect to the probability distribution fW over the
support DW of the distribution, i.e.,

E{Pi (W )Pj (W )}

=

∫
DW

Pi (w)Pj (w) fW (w) dw = δij ,

∀i, j ∈ NM , (6)
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with E being the expectation operator and δij the Kronecker delta; ya are the coefficients of the basis
functions, with the multi-index a being an M -dimensional vector in the set of natural numbers N; Z (w) is140

a standard normal random; and σ2 is a variance hyperparameter of the PCK.
The PCK in Eq. (5) represents the QoIs Y as a Gaussian process (GP), such that the first term in

Eq. (5) describes the trend (or mean) of the GP while the second term Z (w) describes the variance of the
predicted QoIs. The trend of PCK is in fact an expansion of orthogonal polynomials that can represent
any finite variance QoI [78]. Constructing the orthogonal basis Pa (W ) requires the knowledge of the multi-145

variate probability distribution fW . Eq. (6) gives the tensor product of M univariate polynomials that are
orthonormal with respect to their corresponding marginal probability distribution. Optimal L2-convergence
of the expansion of orthogonal polynomials has been established based on the Wiener-Askey scheme for
various probability distributions [78, 11], although arbitrary orthogonal basis functions with sub-optimal
convergence can also be constructed directly from moments of the random variable W [43]. As described,150

the multivariate random variable W consists of the states s, input variables x, and time lag δ. When
x corresponds to uncertainties of a computational model (e.g., uncertainties in model parameters and/or
initial conditions), their probability distribution is typically available a priori from parameter inference. As
such, their respective polynomial basis functions can be chosen according to the Wiener-Askey scheme (e.g.,
Hermite basis for Gaussian distributions, Legendre for uniform distributions). On the other hand, when x155

corresponds to manipulated variables of a system, as is the case in the discovery of system dynamics, the
input variables can typically be modeled as uniform distributions within a known range. The time lag δ can
also be modeled as a uniform distribution within some range of interest for the application at hand. How-
ever, the distribution of states sk is dependent on the realized state trajectories when the training data are
generated and, thus, cannot be established a priori. Here, we assume states follow a multivariate Gaussian160

distribution with a mean and covariance computed from the training samples.
For practical reasons, the expansion of the trend term in Eq. (5) must be truncated up to a finite order.

The truncated polynomial chaos expansion takes the form∑
a∈A

yaPa (W ), (7)

where the order of the expansion is dictated by the multi-index a ∈ A, with A ⊂ NM being the set of the
multi-indices kept in the truncated expansion. The truncation scheme aims to limit the infinite expansion of
the trend to a series of maximum order p. To address the challenges that arise due to increasing the order of
the polynomial basis for better approximation and/or the large dimension of w, sparsity can be introduced
by employing the hyperbolic truncation scheme [5], also known as the q-norm scheme,

AM,p,q = {a ∈ AM,p : ||a ||q ≤ p},

||a ||q =

(
M∑
i=1

aqi

) 1
q

. (8)

In principle, the coefficients ya of the polynomial chaos expansion in Eq. (7) can be determined in a
non-intrusive manner via solving a least-squares problem [4]. Here, we induce further sparsity by modifying
the coefficient estimation problem to a L1-regularized regression problem [24]. The regularized coefficient
estimation problem can be efficiently solved using the least-angle-regression (LAR) algorithm [19], which165

efficiently estimates the coefficients of the most relevant terms of the expansion in Eq. (7), setting the rest
of the coefficients to zero.

Moreover, Z(w) in Eq. (5) is defined in terms of a kernel function R(|w − w′|, θ), i.e., a function that
provides some measure of similarity between different realizations of the random variable W . Here, we use
the Matérn kernel function [76]. Overall, the “tuning parameters” of the PCK that must be determined using170

the training data include the coefficients ya of the trend, the variance term σ2, and the hyperparameters θ
of the kernel function. This is efficiently done via maximum-likelihood estimation [61].

Finally, to quantify the quality of the PCK predictions, we use the leave-one-out cross-validation (LOOCV)
error that is estimated from the training data. When one-step ahead test samples are available, validation
errors can readily be evaluated. Furthermore, we assess the ability of the data-driven flow-map models
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in approximating the integration operator and, hence, their predictive accuracy over a multi-step integra-
tion horizon. Given i = 1, . . . , NV validation state trajectories, each of which of length Ti, we define the
normalized, time-averaged prediction error of QoIs, ϵi, as

ϵi =

Ti∑
k=0

1

Ti

||Yk,i −Ytrue
k,i ||2

||Ytrue
k,i ||2

(9a)

ϵ̂ =
1

NV

Nv∑
i=1

ϵi, (9b)

where || · ||2 is the 2-norm of a vector; Ytrue
k,i and Yk,i are, respectively, the vector of OoIs in the validation

dataset and those predicted by the data-driven flow-map models at time instant k for each validation run i.
In the remainder, we refer to ϵi as the mean trajectory error (MTE), whereas ϵ̂ is the average MTE over all175

validation trajectories.

2.3. Data Generation and Model Training

To train an approximate flow-map model Φ̃(wk), we require input-output data that represent one-step
transitions between states. To this end, a total of NT trajectories of state variables sk over a discrete-time
horizon {0, 1, · · · , k, k + 1, · · · , T} are generated, where T is the length of the time horizon of the training180

trajectories. At each time instant k, a single training sample consists of wk → Yk.
For trajectory generation, it is crucial to vary the initial conditions s0 and inputs xk within some allowable

range, as well as the time lag δ whenever applicable. The training data must cover a wide range of state, input
and time lag values, as relevant to the application of the trained models. As such, each sample of observed
states within each trajectory represents a unique transition from the current to future state of the system185

for the given input and time lag values. We note that an effective strategy for generating simulation data
is via one-step transitions. That is, instead of generating an entire trajectory given some initial conditions
s0, we can randomly sample the state-space, along with the uncertain parameters and time lag, in order to
compute the corresponding future states.

The data generation and PCKmodel training strategy adopted in this work is summarized in Figure 2. We190

remark that, although random sampling is used here to generate the training data, PCK provides confidence
estimates on its predictions that can be used towards active learning-based sampling (e.g., see [73]). As will be
demonstrated in the subsequent sections, the main benefits of using PCK for constructing data-driven flow-
map models include: (i) being more data efficient, especially as compared to feedforward neural networks [68],
when used for discovery of system dynamics from system observations; (ii) offering significant improvements195

in the computational efficiency of data generation for surrogate modeling for dynamical systems as compared
to time-frozen approaches; and (iii) characterizing the uncertainty of model predictions.

In this work, the following procedure is used for fitting the PCK models. We use the sequential PC-
Kriging approach proposed in [61], where a polynomial chaos expansion (PCE) is first trained based on the
available data and is then embedded as the trend of PCK. For training the PCE, we allow the polynomial200

expansion’s maximum order to vary from 1 to 5; higher order polynomials are avoided to retain a smaller
expansion (i.e., less degrees of freedom) and mitigate overfitting. The truncation factor q in Eq. (8) is varied
from 0.7 to 0.85 since the resulting maximum order of the polynomials will ensure that we do not have
highly nonlinear interaction terms while allowing for elimination of few of interaction terms. The optimal
value of q is chosen based on cross-validation. We use a Matérn kernel for the GP part of PCK models. The205

hyperparameters of PCK are selected using a data-driven optimization algorithm, namely the covariance
matrix adaptation–evolution strategy [23].

3. Data-Driven Discovery of Dynamical Systems

In this section, we apply the PCK-based flow-map modeling approach to learn the dynamics of several
benchmark systems using limited data. The first case study, based on the Morris-Lecar system, compares210

the performance of the PCK model with neural network modeling results of [68]. The second case study,
based on the Lorenz system, focuses on reconstructing the dynamics of a chaotic system in which variations
in parameters significantly change the solution landscape. Lastly, we show how the flow-map modeling
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approach can be used for discovering the dynamics of a co-culture bioreactor under noisy observations and
how the variance term of PCK provides a measure of uncertainty of model predictions.215

3.1. Morris-Lecar System

The first benchmark problem is the Morris-Lecar system [38], which describes neuronal excitability. This
system was used in [68] to examine neural network-based flow-map models for the discovery of nonlinear
dynamics. In particular, a residual neural network was used to represent the data-driven flow-map model,
in which only the flow-map residual is learned by skipping the input connection to the neural network and
adding it to the output of the latter. Here, we aim to recreate the results of the aforementioned work,
demonstrating the data efficiency of the proposed PCK approach to data-driven reconstruction of dynamics.
The dynamics of the Morris-Lecar system are described by

CM
dV

dt
= −gL(V − VL)− gCa(V − VCa)M∞

− gk(V − VK)N + Iapp (10a)

dN

dt
= λN (N∞ −N), (10b)

where V (mV) is the voltage difference between the sides of the membrane and N represents the probability
for the potassium channel being open. The parameters M∞, N∞ and λN depend on the voltage, as defined
in the SI. We focus on the so-called Type I model with parameters taken from [68] and given in the SI.
Here, it is assumed that the model parameters are fixed, as we aim to reconstruct the system dynamics as a220

function of xk = Iapp that can vary within the range [0, 300] A. Specifically, we aim to predict the long-term
system dynamics, starting from a given initial conditions, under a fixed Iapp. To compare our results with
those in [68], δk was chosen to be 0.2 ms; we did not consider the time-lag as part of the PCK model. This
system exhibits a saddle node bifurcation, which leads to an oscillatory behavior depending on the value of
input Iapp. Thus, the data-driven flow-map model must capture the oscillatory behavior for different values225

of Iapp.
To train the PCK-based flow-map model, we generated one-step ahead samples of the states Vk and

Nk by randomly drawing the initial states from [−75, 75] × [0, 1]. Here, we first examine the convergence
error of the flow-map model to characterize how many samples of states would be necessary for data-driven
reconstruction of the system dynamics. We quantify the convergence error in terms of the average MTE in230

Eq. (9) based on three validation trajectories generated for Iapp = {0, 60, 150}. Figure 3 shows the average
MTE estimated over 1,000 time steps in relation to the number of training samples, where the vertical line
around each error represents one standard deviation based on 5 repetitions of the analysis. It is evident that
the error converges after about 160 samples, suggesting that a limited number of training samples is needed.

Figure 4 shows the reconstructed dynamics by the PCK-based flow-map model trained using 240 samples235

in comparison with the true dynamics. As can be seen, there is no visible discrepancy between the true
time-evolution of the system and the reconstructed dynamics. The system exhibits a bifurcation behavior,
as evident from the phase plots shown in Figure 4(c), (f), (i). Yet, the PCK-based flow-map model is able
to capture this complex behavior and accurately predict the system dynamics over a long-time horizon. We
note that a 500-fold saving in the number of training samples is observed as compared to [68] in which a240

recurrent neural network representation was used for the flow-map model. This is while the PCK model also
yields slightly more accurate predictions.

3.2. Lorenz System

We now consider a chaotic dynamical system based on the well-known Lorenz benchmark problem [65].
The Lorenz system has been widely used in the data-driven modeling literature (e.g., [18, 52]). The Lorenz245

system is described by the following set of nonlinear ordinary differential equations

8



da

dt
= σ(b− a) (11a)

db

dt
= a(ρ− c)− b (11b)

dc

dt
= ab− βc, (11c)

where s = [a, b, c]⊤ are the system states and x = [σ, ρ, β]⊤ are the uncertain model parameters.
Chaotic behaviors can be encountered in various chemical and biological systems, including in the growth
of biological populations with non-overlapping generations [36] and the peroxidase–oxidase oscillator [41].
Here, we consider a constant time-lag δ = 0.01 that captures the intrinsic time-scale of the system [8].250

The Lorenz system exhibits a chaotic behavior based on the initial conditions s0, while its long-term
behavior is highly affected by the uncertain parameters x. The nominal initial conditions and parameters of
the system are, respectively,
s0 = [1.9427, −1.4045, 0.9684]⊤ and x0 = [10, 28, 8/3]⊤, for which the system oscillates around two
attractors. Here, the training data consisted of 500 random samples of the state-space s within the range255

[−10, 10]× [−10, 10]× [−10, 10] and the parameters x within the range [8, 12]× [10, 30]× [1, 5.5]. We used
two validation trajectories to compare the true system dynamics with those reconstructed by the PCK-based
flow-map model: one trajectory based on the nominal initial conditions and parameters and the other based
on x = [10, 15, 8/3]⊤ and s0 = [1.6655, −0.1178, 0.1748]⊤.

Figure 5 shows phase plots of the reconstructed oscillatory dynamics of the Lorenz system, in comparison260

with the true system dynamics, over a simulation horizon of 5,000 time steps. We observe that the qualitative
behavior of the Lorenz system is different when the parameter ρ is varied, while the PCK-based flow-map
model is able to reconstruct the dynamics in both cases. The MTE is 0.522 for the nominal validation
trajectory and 0.0013 for the second validation trajectory. Although the error for the nominal validation
trajectory seems relatively high, the main characteristics of the true dynamics are adequately captured, as265

evident from Figure 5(a)-(c). That is, the limit circles, the amplitude of oscillation and period are adequately
captured. These predictions are consistent with those reported in [52]. However, we note that reconstruction
of the Lorenz dynamics using neural networks typically requires on the order of a few thousands of training
samples [56, 8], whereas the PCK model here was trained using 500 samples.

3.3. Transient Co-culture System270

In this case study, we demonstrate the ability of PCK-based flow-map models to learn the transient
behavior of a co-culture system with variable inputs. In particular, we focus on the startup dynamics of
a continuous bioreactor driven by the competition of several auxotrophs [42]. To emulate data collection
from a real system, we use a nonlinear dynamic model of the bioreactor [71] (given in the SI) to generate
observations of the system states, which are then corrupted with independent and identically distributed275

state-dependent measurement noise ei ∼ N (0, 2.5× 10−2sik), with i being an index for the measured states
and k the time index. The five state variables sk of the bioreactor include: the population of the two species
N1(Cells/L) and N2(Cells/L), the auxotrophic nutrients concentrations C1(g/L) and C2(g/L), and the
common shared carbon source concentration C0(g/L). The bioreactor has three process inputs xk that can
be varied in time. The process inputs are the dilution rate D (hr−1) that varies within the range [0.75, 1.5]280

(hr−1), as well as the feed substrate concentration of auxotrophs C1,in (g/l) and C2,in, both varying in
the range [1.5, 2] (g/l). To generate data for training the PCK-based flow map models, short simulation
“experiments” with a fixed length of T = 30 steps with δk ∈ [0.15, 0.25] hr−1 were performed. At each
time step k during the multi-step experiments, inputs xk were varied over the time interval δk and noisy
observations of the states were collected.285

For the validation plots of Figure 6, we begin by some random initial condition at k = 0, by applying
an input x0 over some interval δ0. The model predicts the mean of the states at k = 1, as well as their
variance. The integration proceeds by taking a next step based on the mean value of the states at k = 1,
predicting the states at k = 2. Using only the mean value to compute trajectories is probably the simplest
way when Gaussian Process state space models are utilized, however, there are more sophisticated ways for290

the trajectory generation [26], which are beyond the scope of the paper. Note that properly incorporating
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the uncertainty in multi-step ahead predictions is a complicated issue addressed in the literature [49, 21].
Here, it suffices to use a deterministic function, e.g., the mean value of the data-driven flow-map model, to
integrate in time since this way we avoid the major issue of using noisy inputs into our PCK model. The
validation trajectories have a length of Nk = 40 steps ahead, extending slightly beyond the training range.295

Moreover, thanks to the nature of the PCK model, we can also simply characterize the confidence of the
model to the prediction of the dynamics. To get some uncertainty estimates on the predicted trajectories,
at each step k, we plot the 3σ(wk) error bars around the mean. Overall, we observe that the true, noiseless
trajectories are embedded within the confidence intervals of the PCK predictions.

4. Uncertainty Quantification of Expensive Computational Models300

In this section, we demonstrate the utility of data-driven flow-maps for the UQ of a Microbial Electrosyn-
thesis (MES) bioreactor using a high-fidelity computational model that is subject to uncertainty in model
parameters and initial conditions. In particular, we show how flow-maps can be used as surrogate models
for efficient sample-based approximation of distribution of QoIs, global sensitivity analysis, and Bayesian
parameter inference, when the original model is prohibitively expensive for a sample-based analysis.305

We consider the batch MES bioreactor shown in Figure 7 for CO2 fixation [1], with potential applications
in space biomanufacturing [3]. The bioreactor consists of a well-mixed liquid bulk phase that contains
dissolved CO2, i.e., substrate. A microbial community forming a biofilm grows on the cathode of the
bioreactor. The dissolved substrate diffuses into the biofilm through a linear boundary layer and is then
consumed by bacteria towards the growth of the biofilm. This leads to spatial distribution of the substrate310

concentration within the biofilm. Voltage is applied to the cathode while the biofilm acts as a conductive
matrix through which electron transport takes place. Both the substrate CO2 in the biofilm and the local
overpotential due to the current flux contribute to the biofilm growth kinetics described by the dual Monod-
Nerst model [70].

A computational model of the dynamics of the MES bioreactor is adopted from [28, 35], with some
modifications. Within the biofilm, the cell growth leads to the production of acetate as a metabolic product.
A primary modeling approach in the aforementioned papers assumes the total biomass has a constant
concentration and exists in two forms, active and inactive, each of which occupies some volume fraction. We
assume that biomass exists only in active form, thus the equations describing the volume-fraction change
within the film effectively become a single equation for the rate of change of film thickness, Lf , which is a
differential state in our system. Moreover, the film growth is affected by a constant detachment rate. It is
also assumed that the reaction occurs only within the biofilm, so the only source of acetate in the bulk phase
comes from exchange with the biofilm through the boundary layer. We further assume the transport-reaction
phenomena in the biofilm are much faster than the transport that occurs across the boundary layer and in
the bulk phase; accordingly, the conservation laws inside the biofilm are considered to be in pseudo steady-
state [28]. Hence, the computational model consists of a set of nonlinear second-order ordinary differential
equations that describe the spatial distribution of substrate, acetate and overpotential within the biofilm,
coupled with a set of first-order ordinary differential equations that describe the concentration of CO2 in the
bulk phase Sb, the acetate concentration in the bulk phase Pb, and the biofilm thickness Lf . As such, the
three state variables of the system are described by

dLf

dt
= (Y q̂ − rd)Lf (12a)

dSb

dt
=

Af

Vr
jS (12b)

dPb

dt
=

Af

Vr
jP , (12c)

where Y ( mgX
mmolS ) is the biomass yield coefficient, q̂( mmolS

mgXdays ) represents an average substrate consumption

specific rate within the biofilm, rd (
1

days ) is a detachment rate, Af (cm
2) is the cross-sectional area of the

biofilm, and Vr (cm
3) is the bioreactor volume. The mass balances for the substrate and product are a
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function of the flux of each species across the linear boundary layer described by

jm =
Db

Lb
(mf (z = Lf )−mb), m = S, P , (13)

where m denotes the species (i.e., substrate and product), Db (
cm2

days ) is the diffusivity coefficient in the315

boundary layer and Lb(cm) is the thickness of the boundary layer. The subscript f denotes the species
concentration in the film at position z = Lf . The equations that describe the diffusion phenomena within
the film are given in the SI. In order to determine the concentrations at Lf , a boundary value problem
(diffusion within the film) must be solved at each time step, as the concentrations in the biofilm are a
function of the bulk concentrations. The computational model is fairly expensive for UQ analyses that rely320

on Monte Carlo sampling; each model run takes on average 4.5 minutes. The model is subject to time-
invariant uncertainty in its parameters and initial conditions. Specifically, the model uncertainty comprises
of the conductivity of the biofilm kbio, the maximum growth rate µmax of the Nerst-Monod model, the yield
Y , the Monod affinity constant Ks, as well as the acetate production-related parameters α and β. These
six uncertain parameters are assumed to follow a uniform probability distribution. Their nominal values are325

[kbio, µmax, Y, Ks, α, β]⊤ = [1× 10−3, 4.5, 0.25, 3.0, 0.1, 2× 10−5]⊤, while they vary uniformly ±10%
from the nominal values.

In this case study, we construct data-driven flow-map models of the PCK form in Eq. (5) for the QoIs
Y = [Lf Sb Pb]

⊤, such that the six sources of uncertainty constitute the vector of input variables x in
Eq. (5). The three flow-map models, one for each QoI, were trained using simulation data generated via the330

computational model for lag times in the range of δ = [0.05, 0.1] days, which allow us to adequately capture
the bioreactor dynamics. Notice that clearly the lag time δ must always be larger than the integration time
step of the computational model.

The training dataset consists of full state trajectories, as well as one-step ahead samples of the states.
We initially generate NT = 30 trajectories, with fixed uncertain parameters in time, over a process time span335

from 0 to 3.5 days, which corresponds to approximately T = 50 samples per trajectory. Then, using the
states sk corresponding to each sample wk, we randomize the uncertain parameters and perform one-step
ahead simulations. In this way, approximately 1,400 training samples were generated, while 800 samples are
used for training the PCK models. The rationale behind not randomizing the states is that the validation
trajectories (step 0 of Figure 2) indicate that there is a high correlation among state values. For instance, as340

Lf grows in time (under insignificant detachment), Sb decreases due to consumption. Thus, for a given set
of uncertain parameters and initial states, a few full state trajectories will help generate more informative
training samples. Figure 8 shows the predicted trajectories using the data-driven flow-map PCK model for a
given realization of uncertainty and initial conditions, while the true trajectory is juxtaposed. The trajectories
correspond to a time-march of 50 steps ahead. We observe a perfect agreement between the predicted and345

validation trajectories, with the average MTE for the three states being approximately ϵ̂ = 2.5× 10−4.
An important remark should be made here regarding the benefits of the presented flow-map approach to

surrogate modeling of dynamical systems in comparison with the so-called time-frozen approaches discussed
in Section 1. First, the flow-map models provide the flexibility to approximate the distribution of states
at any time instant of interest without the need for constructing a separate surrogate model for each time350

instant, as in time-frozen surrogate modeling. For example, if we were to use a time-frozen approach,
50 separate PCK models would need to be constructed for each QoI to predict the time-evolution of the
QoI distribution over the 50 time instants considered here. Thus, not only a flow-map modeling approach
significantly reduces the number of surrogate models that must be constructed to only one model for each
QoI, it also provides flexibility via alleviating the need to build the models at pre-specified time points.355

Furthermore, the flow-map modeling approach enables more efficient data generation. To clarify this point,
let us assume that Np realizations of uncertainty are sufficient for generating a rich training dataset that
yields surrogate models with low approximation error. In the case of the time-frozen approach, we would
require to generate Np full state trajectories since the states must be observed at all time instants for all
uncertainty realizations. This approach to data generation can become prohibitively expensive, in particular360

when data generation relies on expensive simulations. However, training the flow-map models, in principle,
requires simulation of a limited number of full state trajectories (in this study, 25 trajectories), whereas
Np training samples can be straightforward generated via one-step ahead integration of the computational
model. In the following, the use of PCK-based flow-map models is demonstrated for expensive UQ analyzes.
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4.1. Forward Uncertainty Propagation and Global Sensitivity Analysis365

Here, we use the data-driven flow-map models for efficient uncertainty propagation via sample-based
approximation of the distribution of the three QoIs. Figure 9(a)-(c) shows the distribution of the QoIs at
t = 3.5 days. To approximate the distribution of QoIs, the flow-map models were evaluated using 20,000
realizations of the model uncertainty x. Each run of the data-driven flow-map model takes on average less
than 3 seconds,1 as opposed to the average run time of 4 minutes of the computational model. This implies370

that the flow-map models significantly accelerate the uncertainty propagation, enabling an approximately
100-fold increase in the computational speed. This is especially beneficial when the distributions are skewed
(or bi-modal), as in Figure 9(a)-(c). In this case, a large number of samples, O(104−105), would typically be
required for accurate sampled-based approximation of distribution, or statistical moments of QoIs. Although
not shown here, we can efficiently approximate the distribution of QoIs at any time instant using trajectories375

generated by the surrogate model.
Moreover, we use the data-driven flow-map models to perform a global sensitivity analysis in order to

asses the importance of the six uncertain model parameters, x, on the QoIs Y . This is done via evaluation of
the Borgonovo indices [7], denoted by S, which are based on the full distribution of QoIs, as opposed to their
statistical moments. The results of global sensitivity analysis of QoIs at t = 3.5 days are shown in Figure380

9(d)-(f), where each bar corresponds to a different uncertain model parameter. The Borgonovo indices
are approximated using the same 20,000 samples used in forward UQ. We observe that the probabilistic
uncertainty of yield Y and maximum growth rate µmax have the most dominant effects on the variability
of the three QoIs, while the product concentration Pb is also significantly affected by the uncertainty in the
parameter α, which is the metabolism-related productivity constant.385

4.2. Bayesian Inference of Unknown Model Parameters

We now use the data-driven flow-map models to solve a Bayesian inference problem in order to infer
the uncertain model parameters x. Bayesian inference relies on Bayes theorem to estimate the posterior
probability distribution of the unknown model parameters from available data. Here, noisy observations of
Lf , Sb and Pb at time instants {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5} days constitute the dataset D used for
parameter inference; measurement noise is modeled as a Gaussian distribution with zero mean and state-
dependent variance. Once a vector of system measurements d at a time instant is observed, the change in
our knowledge about the unknown parameters is described by Bayes’ rule [29]

fx|D (x|d) =
fD|x (d|x) fx (x)

fD (d)
, (14)

where fx|D denotes the posterior distribution of the uncertain parameters after observing the data; fD|x is
the likelihood function that describes the probability of observing data given the parameter estimates; fx is
the prior distribution of parameters; and fD is the so-called evidence or marginal likelihood that ensures the
posterior distribution integrates to 1.390

As Eq. (14) implies, Bayesian inference provides an explicit representation of the uncertainty in the
parameter estimates via characterizing the full posterior distribution of unknown parameters x. The prior
distribution of parameters and the likelihood function must be specified to solve Eq. (14). Here, we used
the same uniform distributions as those used to construct the PCK surrogate models to represent the
prior distributions, although these can be different. The likelihood function is specified by the observation395

noise model, which is assumed to be zero-mean Gaussian with state-dependent variance in this work. We
use a particle filtering method, namely sequential Monte Carlo (SMC) [32], to approximately solve the
Bayesian inference problem by iteratively updating the posterior fx|D at every time instant that system
observations become available; see [34] for further details. Notice that parameter estimation via Bayesian
inference methods such as SMC relies on accurate construction of the probability distributions in Eq. (14).400

As described in Section 4.1, the data-driven flow-map models enable efficient sample-based approximation

1Notice that the evaluation time of a PCK model depends on a multitude of factors, such as the degree of the polynomial
basis functions, kernel type, and, mainly, amount of data used to train the model. Additionally, a kernel-based model such as
PCK is more expensive to evaluate than a polynomial chaos expansion.

12



of the distributions using a very large number of samples, which otherwise could be impractical using an
expensive computational model.

Figure 10 shows the posterior distribution of the parameters x at t = 3.5 days estimated via SMC using
the dataset D, as specified above. The posterior distributions are approximated using 20,000 particles. Note405

that the posterior distribution ranges seem to be larger than the prior in some cases, which is an artifact of
the kernel density estimation (i.e., the selection of the bandwidth parameter) [15]. Figure 10 suggests that
only the posterior distributions of parameters Y and µmax have changed significantly with respect to their
priors. It is also evident that the mean of the posterior distributions (blue vertical lines) for parameters Y
and µmax provides a fairly accurate estimate for the true, but unknown, parameter values (brown vertical410

lines). In particular, the true value and the posterior mean are indistinguishable, while the posteriors are
much more narrow compared to priors as stated before. Nonetheless, the posterior distributions for the
other parameters remain similar to their priors with little to no change, suggesting these parameters cannot
be estimated using the available dataset D. This can be attributed to the lack of information content
of system observations D for inferring the unknown parameters; a deficiency that can be addressed via415

optimal experiment design [55, 46]. We again note the flexibility of the flow-map models that would allow
us to seamlessly add new observation points, should that become necessary for better parameter inference,
without the need to construct new surrogate models for the QoIs observed at new time points.

5. Conclusions

This paper presented a flow-map modeling approach based on polynomial chaos Kriging for the discovery420

of system dynamics from data. Data-driven flow-map models directly approximate the integration operator
of differential equations that describe the state transitions of a dynamical system as a function of system
state and input variables. We illustrated the usefulness of the proposed approach for learning mathematical
descriptions of nonlinear dynamical systems and deriving dynamic surrogate models for fast uncertainty
quantification applications. Our analyzes reveal that polynomial chaos Kriging-based flow-maps offer sig-425

nificant benefits in terms of data efficiency, as well as computational efficiency of data generation, for the
discovery of nonlinear system dynamics and surrogate modeling.
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Figures

Figure 1: Data-driven flow-map models for predicting the state variables of a dynamical system over time. The flow-map model
Φ̃ takes the current states sk, inputs xk, and lag time δk at a discrete-time instant k as inputs to predict the states sk+1 at
the subsequent time instant k + 1. By sequentially repeating this procedure, the time-evolution of the states in relation to the
inputs can be established.
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Figure 2: Algorithm for data generation and training of data-driven flow-map models. Validation trajectories are first generated.
Then, one/multi-step ahead simulations or experiments are performed to observe successor states given the initial states, inputs,
and time-lag. Subsequently, the data-driven flow-map model is trained. In the case of PCK models used in this work, several
hyperparameters must be selected during the model training. These include the polynomial order, hyperbolic truncation
parameter, covariance function and the regression method used for estimating the expansion coefficients. Finally, the prediction
accuracy of the trained model is assessed against the long-time validation trajectories. If the prediction accuracy ϵ̂ is larger
than some pre-specified threshold ϵ̂0, the model training and validation process will be repeated.
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Figure 3: The average mean trajectory error, ϵ̂, of the PCK-based flow-map model for the Morris-Lecar system in relation
to the number of training samples, Ns. The error is estimated based on three validation trajectories generated for the input
Iapp values {0, 60, 150}. The vertical bars represent the standard deviation of the error estimated based on 5 repeats of the
training.

Figure 4: Reconstructed dynamics of the Morris-Lecar system by the PCK-based flow-map model in comparison with the true
system dynamics for the input Iapp values {0, 60, 150}. The PCK-based flow-map model is trained using 240 samples. The left
column shows the time-evolution of voltage difference, V ; the middle column shows the time-evolution of the channel opening
probability, N ; and the right column shows the corresponding phase plots.
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Figure 5: Phase plots of the reconstructed dynamics of the Lorenz system by the PCK-based flow-map model in comparison
with the true system dynamics for different values of model parameters. Subplots (a)-(c) correspond to the model parameters
σ = 10, β = 8/3, and ρ = 28. Subplots (d)-(f) correspond to the model parameters σ = 10, β = 8/3, and ρ = 15.

Figure 6: Predictions of the state variables of the transient co-culture system via the PCK-based flow-map models in comparison
with the observed state trajectories. The colored lines/points correspond to the predicted trajectories by the mean of the PCK
models, starting from some initial states at t = 0 hr. Black symbols represent the observed trajectories at specific snapshots
during a validation run. Vertical error bars represent the uncertainty in the predictions of the PCK models, estimated as
plus/minus two standard deviations from the mean value. The shaded areas correspond to a time interval that was not
accounted for when training the PCK models.
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Figure 7: Schematic of the microbial electrosynthesis bioreactor. The bioreactor consists of 3 regions: the bulk phase, the
biofilm, and a boundary layer (BL) in between. The black line represents a typical concentration profile of some species as
predicted by the computational model used in this work. The concentration is assumed to be constant in the bulk phase,
changing linearly across the boundary layer, and exhibiting a more complicated shape in the biofilm.

Figure 8: Predicted state trajectories of the the microbial electrosynthesis bioreactor: (a) biofilm thickness, Lf , (b) CO2

concentration in the bulk phase, Sb, and (c) acetate concentration in the bulk phase, Pb. Hollow points represent the validation
trajectories, while the solid lines represent the trajectories predicted by the PCK-based flow-map models.
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Figure 9: Fast uncertainty propagation and global sensitivity analysis of the the microbial electrosynthesis bioreactor using
data-driven flow-map models of quantities of interest. Subplots (a)-(c) show the kernel density estimates of the distribution
of the biofilm thickness (Lf ), concentration of CO2 in the bulk phase (Sb), and acetate concentration in the bulk phase (Pb)
predicted by the PCK models at time t = 3.5 days. The distributions of Lf , Sb and Pb are approximated via Monte Carlo
sampling using 20,000 realizations of uncertain model parameters, where a 100-fold computational speedup in sample-based
approximation of the distributions is attained. Subplots (d)-(f) show the Borgonovo indices, denoted by S, that quantify the
global sensitivity of Lf , Sb and Pb at t = 3.5 days with respect to the six uncertain model parameters. The Borgonovo indices
are approximated based on 20,000 uncertainty realizations.

Figure 10: Bayesian inference of unknown parameters of the computational model of the microbial electrosynthesis bioreactor.
The parameters are estimated via sequential Monte Carlo using 20,000 particles. Red and blue distributions represent the prior
and posterior distributions of the unknown model parameters at time 3.5 days, respectively. The red vertical lines correspond
to the true parameters, while the blue vertical lines are the estimated posterior mean value of parameters.
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Figure Legends

Figure 1:Data-driven flow-map models for predicting the state variables of a dynamical system over time.
The flow-map model Φ̃ takes the current states sk, inputs xk, and lag time δk at a discrete-time instant k
as inputs to predict the states sk+1 at the subsequent time instant k + 1. By sequentially repeating this445

procedure, the time-evolution of the states in relation to the inputs can be established

Figure 2:Algorithm for data generation and training of data-driven flow-map models. Validation trajec-
tories are first generated. Then, one/multi-step ahead simulations or experiments are performed to observe
successor states given the initial states, inputs, and time-lag. Subsequently, the data-driven flow-map model450

is trained. In the case of PCK models used in this work, several hyperparameters must be selected during the
model training. These include the polynomial order, hyperbolic truncation parameter, covariance function
and the regression method used for estimating the expansion coefficients. Finally, the prediction accuracy
of the trained model is assessed against the long-time validation trajectories. If the prediction accuracy ϵ̂ is
larger than some pre-specified threshold ϵ̂0, the model training and validation process will be repeated.455

Figure 3:The average mean trajectory error, ϵ̂, of the PCK-based flow-map model for the Morris-Lecar
system in relation to the number of training samples, Ns. The error is estimated based on three validation
trajectories generated for the input Iapp values {0, 60, 150}. The vertical bars represent the standard devi-
ation of the error estimated based on 5 repeats of the training.460

Figure 4:Reconstructed dynamics of the Morris-Lecar system by the PCK-based flow-map model in com-
parison with the true system dynamics for the input Iapp values {0, 60, 150}. The PCK-based flow-map
model is trained using 240 samples. The left column shows the time-evolution of voltage difference, V ; the
middle column shows the time-evolution of the channel opening probability, N ; and the right column shows465

the corresponding phase plots.

Figure 5:Phase plots of the reconstructed dynamics of the Lorenz system by the PCK-based flow-map
model in comparison with the true system dynamics for different values of model parameters. Subplots
(a)-(c) correspond to the model parameters σ = 10, β = 8/3, and ρ = 28. Subplots (d)-(f) correspond to470

the model parameters σ = 10, β = 8/3, and ρ = 15.

Figure 6:Predictions of the state variables of the transient co-culture system via the PCK-based flow-
map models in comparison with the observed state trajectories. The colored lines/points correspond to the
predicted trajectories by the mean of the PCK models, starting from some initial states at t = 0 hr. Black475

symbols represent the observed trajectories at specific snapshots during a validation run.
Vertical error bars represent the uncertainty in the predictions of the PCK models, estimated as plus/minus
two standard deviations from the mean value. The shaded areas correspond to a time interval that was not
accounted for when training the PCK models.

480

Figure 7: Schematic of the microbial electrosynthesis bioreactor. The bioreactor consists of 3 regions: the
bulk phase, the biofilm, and a boundary layer (BL) in between. The black line represents a typical concen-
tration profile of some species as predicted by the computational model used in this work. The concentration
is assumed to be constant in the bulk phase, changing linearly across the boundary layer, and exhibiting a
more complicated shape in the biofilm.485

Figure 8:Predicted state trajectories of the the microbial electrosynthesis bioreactor: (a) biofilm thick-
ness, Lf , (b) CO2 concentration in the bulk phase, Sb, and (c) acetate concentration in the bulk phase, Pb.
Hollow points represent the validation trajectories, while the solid lines represent the trajectories predicted
by the PCK-based flow-map models.490

Figure 9:Fast uncertainty propagation and global sensitivity analysis of the the microbial electrosynthe-
sis bioreactor using data-driven flow-map models of quantities of interest. Subplots (a)-(c) show the kernel
density estimates of the distribution of the biofilm thickness (Lf ), concentration of CO2 in the bulk phase
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(Sb), and acetate concentration in the bulk phase (Pb) predicted by the PCK models at time t = 3.5 days.495

The distributions of Lf , Sb and Pb are approximated via Monte Carlo sampling using 20,000 realizations
of uncertain model parameters, where a 100-fold computational speedup in sample-based approximation of
the distributions is attained. Subplots (d)-(f) show the Borgonovo indices, denoted by S, that quantify the
global sensitivity of Lf , Sb and Pb at t = 3.5 days with respect to the six uncertain model parameters. The
Borgonovo indices are approximated based on 20,000 uncertainty realizations.500

Figure 10:Bayesian inference of unknown parameters of the computational model of the microbial elec-
trosynthesis bioreactor. The parameters are estimated via sequential Monte Carlo using 20,000 particles.
Red and blue distributions represent the prior and posterior distributions of the unknown model parameters
at time 3.5 days, respectively. The red vertical lines correspond to the true parameters, while the blue505

vertical lines are the estimated posterior mean value of parameters.
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