References
Bilyk, K.T., Evans, C.W. & DeVries, A.L. (2012) Heat hardening in Antarctic notothenioid fishes. Polar biology, 35,1447-1451.
Christidis, N., Jones, G.S. & Stott, P.A. (2015) Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 5, 46-50.
Cowles, R.B. (1945) Heat-induced sterility and its possible bearing on evolution. The American Naturalist, 79, 160-175.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668-6672.
Dorai-Raj, S. (2014) binom: Binomial Confidence Intervals For Several Parameterizations.
Fox, J.W., Sanford (2011) An R Companion to Applied Regression . Sage Thousand Oaks (CA).
Geletič, J., Lehnert, M. & Jurek, M. (2020) Spatiotemporal variability of air temperature during a heat wave in real and modified landcover conditions: Prague and Brno (Czech Republic). Urban Climate,31, 100588.
Heerwaarden, B., Kellermann, V. & Sgrò, C.M. (2016) Limited scope for plasticity to increase upper thermal limits. Functional ecology,30, 1947-1956.
Iossa, G. (2019) Sex-specific differences in thermal fertility limits.Trends in Ecology & Evolution, 34, 490-492.
Jørgensen, K.T., Sørensen, J.G. & Bundgaard, J. (2006) Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. Journal of Thermal Biology,31, 280-286.
Jørgensen, L.B., Malte, H., Ørsted, M., Klahn, N.A. & Overgaard, J. (2021) A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Scientific Reports, 11, 1-14.
Karaca, A., Parker, H., Yeatman, J. & McDaniel, C. (2002) The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. British poultry science,43, 621-628.
Kellermann, V., Overgaard, J., Hoffmann, A.A., Fløjgaard, C., Svenning, J.-C. & Loeschcke, V. (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences, 109, 16228-16233.
Krebs, R. & Loeschcke, V. (1994) Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Functional ecology , 730-737.
Loeschcke, V. & Hoffmann, A.A. (2007) Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature. The American Naturalist, 169, 175-183.
Matsui, T., Namuco, O.S., Ziska, L.H. & Horie, T. (1997) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research, 51, 213-219.
Moghadam, N.N., Ketola, T., Pertoldi, C., Bahrndorff, S. & Kristensen, T.N. (2019) Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity. Biology letters, 15, 20180628.
Neuner, G. & Buchner, O. (2012) Dynamics of tissue heat tolerance and thermotolerance of PS II in alpine plants. Plants in alpine regions , pp. 61-74. Springer.
Parratt, S.R., Walsh, B.S., Metelmann, S., White, N., Manser, A., Bretman, A.J., Hoffmann, A.A., Snook, R.R. & Price, T.A. (2021) Temperatures that sterilize males better match global species distributions than lethal temperatures. Nature Climate Change,11, 481-484.
Pinsky, M.L., Eikeset, A.M., McCauley, D.J., Payne, J.L. & Sunday, J.M. (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569, 108-111.
Porcelli, D., Gaston, K.J., Butlin, R.K. & Snook, R.R. (2016) Local adaptation of reproductive performance during thermal stress.Journal of evolutionary biology, 30, 422-429.
Pottier, P., Burke, S., Drobniak, S.M., Lagisz, M. & Nakagawa, S. (2021) Sexual (in) equality? A meta‐analysis of sex differences in thermal acclimation capacity across ectotherms. Functional ecology .
Powell, J.R. (1997) Progress and prospects in evolutionary biology: the Drosophila model . Oxford University Press.
Rohmer, C., David, J.R., Moreteau, B. & Joly, D. (2004) Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome. Journal of Experimental Biology, 207, 2735-2743.
Sales, K., Vasudeva, R., Dickinson, M.E., Godwin, J.L., Lumley, A.J., Michalczyk, Ł., Hebberecht, L., Thomas, P., Franco, A. & Gage, M.J. (2018) Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications, 9, 1-11.
Sales, K., Vasudeva, R. & Gage, M.J. (2021) Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect. Royal Society Open Science, 8, 201717.
Sambucetti, P. & Norry, F.M. (2015) Mating success at high temperature in highland‐and lowland‐derived populations as well as in heat knock‐down selected Drosophila buzzatii. Entomologia Experimentalis et Applicata, 154, 206-212.
Sarup, P., Dahlgaard, J., Norup, A.M., Jørgensen, K., Hebsgaard, M. & Loeschcke, V. (2004) Down regulation of Hsp70 expression level prolongs the duration of heat‐induced male sterility in Drosophila buzzatii.Functional ecology, 18, 365-370.
Sgrò, C.M., Terblanche, J.S. & Hoffmann, A.A. (2016) What can plasticity contribute to insect responses to climate change?Annual review of Entomology, 61, 433-451.
Sørensen, J., Dahlgaard, J. & Loeschcke, V. (2001) Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Functional ecology, 15, 289-296.
Stazione, L., Norry, F. & Sambucetti, P. (2019) Heat-hardening effects on mating success at high temperature in Drosophila melanogaster.Journal of Thermal Biology, 80, 172-177.
Therneau, T. (2015) A Package for Survival Analysis in S.
van Heerwaarden, B. & Sgrò, C.M. (2021) Male fertility thermal limits predict vulnerability to climate warming. Nature Communications,12, 1-11.
Vasudeva, R., Sutter, A., Sales, K., Dickinson, M.E., Lumley, A.J. & Gage, M.J. (2019) Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife, 8, e49452.
Walsh, B.S., Mannion, N.L., Price, T.A. & Parratt, S.R. (2020) Sex-specific sterility caused by extreme temperatures is likely to create cryptic changes to the operational sex ratio in Drosophila virilis. Current Zoology .
Walsh, B.S., Parratt, S.R., Hoffmann, A.A., Atkinson, D., Snook, R.R., Bretman, A. & Price, T.A. (2019) The impact of climate change on fertility. Trends in Ecology & Evolution, 34, 249-259.
Weldon, C.W., Terblanche, J.S. & Chown, S.L. (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. Journal of Thermal Biology, 36,479-485.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis . Springer-Verlag New York.
Young, W.C. & Plough, H.H. (1926) On the sterilization of Drosophila by high temperature. The Biological Bulletin, 51, 189-198.
Zhang, W., Chang, X.-Q., Hoffmann, A., Zhang, S. & Ma, C.-S. (2015) Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Scientific Reports, 5, 10436.
Zhang, W.y., Storey, K.B. & Dong, Y.w. (2021) Synchronization of seasonal acclimatization and short‐term heat hardening improves physiological resilience in a changing climate. Functional ecology, 35, 686-695.
Zwoinska, M.K., Rodrigues, L.R., Slate, J. & Snook, R.R. (2020) Phenotypic Responses to and Genetic Architecture of Sterility Following Exposure to Sub-Lethal Temperature During Development. Frontiers in Genetics, 11, 573.