Simulations of RMS Cilia Array
A finite element method (FEM) analysis was conducted using Multiphysics
software (COMSOL, Inc., Stockholm, Sweden) to verify the experimental
results confirming the motion of the RMS cilia array in the fluid by an
external magnetic field, the fluid flow generated by the motion, and the
particle movement caused by the generated fluid flow. The FEM analysis
was performed using the following process.
First, the AC/DC module was used for FEM analysis of the torque received
by the RMS cilia array from the external magnetic field. In this study,
a magnetic field of 0.02 T was applied to manipulate the cilium, which
has a magnetization value of 68,608 A/m. Based on these values, the
magnetic flux density in the cilium was calculated, and the force
applied to the cilium was calculated using the Maxwell stress tensor.
Second, the fluid-structure interaction (FSI) module was used for the
FEM analysis of cilia motion by an external magnetic field and the fluid
flow generated by cilia motion. The modeled cilium was set as a nearly
incompressible linear elastic material, and the force applied to the
cilium was applied as the boundary load of the cilium in this module. At
this time, the fluid flow in the channel according to the motion of the
cilia was analyzed using incompressible Navier-Stokes equations for the
velocity and pressure fields, and the channel wall was set as a no-slip
condition.
Finally, the particle-tracing module was used to verify the motion
tendency of the particles by the fluid flow generated by the RMS cilia
array. The motion equation for each particle was calculated using
Newton’s second law, considering the force applied to the particle by
the fluid flow and drag force of the particle in the fluid.
Acknowledgments
This work was supported by the National Research Foundation (NRF),
funded by the Ministry of Science and ICT (NRF-2021R1A2C3007817), and the
Korea Health Industry Development Institute (KHIDI) funded by the
Ministry of Health & Welfare (HI19C0642), Republic of Korea.
References
- J.R. Broekhuis, W.Y. Leong, G. Jansen, Int. Rev. Cell. Mol.
Biol. 2013 , 303, 101–138.
- P. Satir, S.T. Christensen, Annu. Rev. Physiol. 2007 ,
69, 377–400.
- D.M. Supp, D.P. Witte, S.S. Potter, M. Brueckner, Nature .1997 , 389, 963–966.
- W.A. Abou Alaiwi, S.T. Lo, S.M. Nauli, Sensors . 209 ,
9, 7003–7020.
- D.N. Wheatley, Pathobiol. 1995 , 63, 222–238.
- J.C. Nawroth, H. Guo, E. Koch, E.A.C. Heath-Heckman, J.C. Hermanson,
E.G. Ruby, J.O. Dabiri, E. Kanso, M. McFall-Ngai, Proc. Natl.
Acad. Sci. U.S.A. 2017 , 114, 9510–9516.
- Y. Ding, J.C. Nawroth, M.J. McFall-Ngai, E. Kanso, J. Fluid
Mech. 2014 , 743, 124–140.
- A.S. Shah, Y. Ben-Shahar, T.O. Moninger, J.N. Kline, M.J. Welsh,Science. 2009 , 325, 1131–1134.
- R.A. Lyons, E. Saridogan, O. Djahanbakhch, Hum. Reprod. Update.2006 , 12, 363–372.
- S. Chateau, U. d’Ortona, S. Poncet, J. Favier, Front. Physiol.2018 , 9, 161.
- E.M. Purcell, Am. J. Phys. 1977 , 45, 3–11.
- M.A. Sleigh, J.R. Blake, N. Liron, Am. Rev. Respir. Dis.1988 , 137, 726–741.
- C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 1977 , 9,
339–398.
- S.A. Baba, Nature. 1979 , 282, 717–720.
- P. Satir, Sci. Am. 1974 , 231, 44–54.
- C. Barton, S. Raynor, Bull. Math. Biophys. 1967 , 29,
419–428.
- E. Aiello, M.A. Sleigh, J. Cell. Biol. 1972 , 54,
493–506.
- S. Gueron, K. Levit-Gurevich, N. Liron, J.J. Blum, Proc. Natl.
Acad. Sci. U.S.A. 1997 , 94, 6001–6006.
- J. Elgeti, G. Gompper, Proc. Natl. Acad. Sci. U.S.A.2013 , 110, 4470–4475.
- P. Satir, J. Cell. Biol. 1963 , 18 345–365.
- E. Milana, B. Gorissen, S. Peerlinck, M. de Volder, D. Reynaerts,Adv. Funct. Mater. 2019 , 29, 1900462.
- S. Hanasoge, M. Ballard, P.J. Hesketh, A. Alexeev, Lab. Chip.2017 , 17, 3138–3145.
- S.N. Khaderi, J.M.J. den Toonder, P.R. Onck, J. Fluid. Mech.2011 , 688, 44–65.
- J. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de
Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, Lab. Chip.2008 , 8, 533–541.
- F. Fahrni, M.W.J. Prins, L.J. van IJzendoorn, Lab. Chip.2009 , 9, 3413–3421.
- S. Sareh, J. Rossiter, A. Conn, K. Drescher, R.E. Goldstein, J.
R. Soc. Interface. 2013 , 10, 20120666.
- S.N. Khaderi, C.B. Craus, J. Hussong, N. Schorr, J. Belardi, J.
Westerweel, O. Prucker, J. Rühe, J.M.J. den Toonder, P.R. Onck,Lab. Chip. 2011 , 11, 2002–2010.
- X. Zhang, J. Guo, X. Fu, D. Zhang, Y. Zhao, Adv. Intell. Syst.2021 , 3, 2000225.
- S. Hanasoge, P.J. Hesketh, A. Alexeev, ACS Appl. Mater.
Interfaces. 2020 , 12, 46963–46971.
- Y. Wang, Y. Gao, H. Wyss, P. Anderson, J. den Toonder, Lab.
Chip. 2013 , 13, 3360–3366.
- M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan,
D. Babič, Proc. Natl. Acad. Sci. U.S.A. 2010 , 107,
1844–1847.
- R. Marume, F. Tsumori, K. Kudo, T. Osada, K. Shinagawa, Jpn. J.
Appl. Phys. 2017 , 56, 06GN15.
- S. Zhang, R. Zhang, Y. Wang, P.R. Onck, J.M.J. den Toonder, ACS
Nano. 2020 , 14, 10313–10323.
- H. Gu, Q. Boehler, H. Cui, E. Secchi, G. Savorana, C. de Marco, S.
Gervasoni, Q. Peyron, T.-Y. Huang, S. Pane, Nat. Commun.2020 , 11, 1–10.
- X. Dong, G.Z. Lum, W. Hu, R. Zhang, Z. Ren, P.R. Onck, M. Sitti,Sci. Adv. 2020 , 6, eabc9323.
- J.V.I. Timonen, C. Johans, K. Kontturi, A. Walther, O. Ikkala, R.H.A.
Ras, ACS Appl. Mater. Interfaces. 2010 , 2, 2226–2230.
- J. B., Segur, H. E. Oberstar, Ind. Eng. Chem. 1951 ,
43, 2117-2120.