Acknowledgements
We would like to thank A. Chatzinotas and S. Tem for the valuable
discussions. We acknowledge support by the German Centre for Integrative
Biodiversity Research Halle-Jena-Leipzig, funded by the German Research
Foundation (FZT 118, 202548816). This study has been partly performed
using the High-Performance Computing (HPC) Cluster EVE, a joint effort
of both the Helmholtz Centre for Environmental Research - UFZ and the
German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig.
Bibliography
Abellan-Schneyder,
I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach,
J., … Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues
in 16S rRNA Gene Sequencing. MSphere, 6(1). doi:
10.1128/mSphere.01202-20
Brooks, J. P.,
Edwards, D. J., Harwich, M. D., Rivera, M. C., Fettweis, J. M., Serrano,
M. G., … Buck, G. A. (2015). The truth about metagenomics:
quantifying and counteracting bias in 16S rRNA studies. BMC
Microbiology, 15, 66. doi: 10.1186/s12866-015-0351-6
Bukin, Y. S.,
Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., &
Zemskaya, T. I. (2019). The effect of 16S rRNA region choice on
bacterial community metabarcoding results. Scientific Data,6, 190007. doi: 10.1038/sdata.2019.7
Callahan, Benjamin
J, McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis.The ISME Journal, 11(12), 2639–2643. doi:
10.1038/ismej.2017.119
Callahan, Ben J,
Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016).
Bioconductor Workflow for Microbiome Data Analysis: from raw reads to
community analyses. [version 2; peer review: 3 approved].F1000Research, 5, 1492. doi:
10.12688/f1000research.8986.2
Callahan, B J,
McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes,
S. P. (2016). DADA2: High-resolution sample inference from Illumina
amplicon data. Nature Methods, 13(7), 581–583. doi:
10.1038/nmeth.3869
Caporaso, J. G.,
Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A.,
Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S
rRNA diversity at a depth of millions of sequences per sample.Proceedings of the National Academy of Sciences of the United
States of America, 108 Suppl 1(Suppl 1), 4516–4522. doi:
10.1073/pnas.1000080107
Chao, A., Chiu,
C.-H., & Jost, L. (2014). Unifying Species Diversity, Phylogenetic
Diversity, Functional Diversity, and Related Similarity and
Differentiation Measures Through Hill Numbers. Annual Review of
Ecology, Evolution, and Systematics, 45(1), 297–324. doi:
10.1146/annurev-ecolsys-120213-091540
Clarridge, J. E.
(2004). Impact of 16S rRNA gene sequence analysis for identification of
bacteria on clinical microbiology and infectious diseases.Clinical Microbiology Reviews, 17(4), 840–862, table of
contents. doi: 10.1128/CMR.17.4.840-862.2004
Curry, K. D.,
Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., …
Treangen, T. J. (2022). Emu: species-level microbial community profiling
of full-length 16S rRNA Oxford Nanopore sequencing data. Nature
Methods, 19(7), 845–853. doi: 10.1038/s41592-022-01520-4
Di Bella, J. M.,
Bao, Y., Gloor, G. B., Burton, J. P., & Reid, G. (2013). High
throughput sequencing methods and analysis for microbiome research.Journal of Microbiological Methods, 95(3), 401–414. doi:
10.1016/j.mimet.2013.08.011
Fouhy, F.,
Clooney, A. G., Stanton, C., Claesson, M. J., & Cotter, P. D. (2016).
16S rRNA gene sequencing of mock microbial populations- impact of DNA
extraction method, primer choice and sequencing platform. BMC
Microbiology, 16(1), 123. doi: 10.1186/s12866-016-0738-z
Johnson, J. S.,
Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L.,
… Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing
for species and strain-level microbiome analysis. Nature
Communications, 10(1), 5029. doi: 10.1038/s41467-019-13036-1
Jurburg, S. D.,
Buscot, F., Chatzinotas, A., Chaudhari, N. M., Clark, A. T., Garbowski,
M., … Heintz-Buschart, A. (2022). The community ecology
perspective of omics data. Microbiome, 10(1), 225. doi:
10.1186/s40168-022-01423-8
Jurburg, S. D.,
Cornelissen, J. J. B. W. J., de Boer, P., Smits, M. A., & Rebel, J. M.
J. (2019). Successional Dynamics in the Gut Microbiome Determine the
Success of Clostridium difficile Infection in Adult Pig Models.Frontiers in Cellular and Infection Microbiology, 9, 271.
doi: 10.3389/fcimb.2019.00271
Jurburg, S. D.,
Konzack, M., Eisenhauer, N., & Heintz-Buschart, A. (2020). The archives
are half-empty: an assessment of the availability of microbial community
sequencing data. Communications Biology, 3(1), 474. doi:
10.1038/s42003-020-01204-9
Jurburg, S. D.,
Nunes, I., Stegen, J. C., Le Roux, X., Priemé, A., Sørensen, S. J., &
Salles, J. F. (2017). Autogenic succession and deterministic recovery
following disturbance in soil bacterial communities. Scientific
Reports, 7, 45691. doi: 10.1038/srep45691
Kang, X., Deng,
D. M., Crielaard, W., & Brandt, B. W. (2021). Reprocessing 16S rRNA
Gene Amplicon Sequencing Studies: (Meta)Data Issues, Robustness, and
Reproducibility. Frontiers in Cellular and Infection
Microbiology, 11, 720637. doi: 10.3389/fcimb.2021.720637
Louca, S., Mazel,
F., Doebeli, M., & Parfrey, L. W. (2019). A census-based estimate of
Earth’s bacterial and archaeal diversity. PLoS Biology,17(2), e3000106. doi: 10.1371/journal.pbio.3000106
Marizzoni, M.,
Gurry, T., Provasi, S., Greub, G., Lopizzo, N., Ribaldi, F., …
Cattaneo, A. (2020). Comparison of Bioinformatics Pipelines and
Operating Systems for the Analyses of 16S rRNA Gene Amplicon Sequences
in Human Fecal Samples. Frontiers in Microbiology, 11,
1262. doi: 10.3389/fmicb.2020.01262
Martínez-Porchas,
M., Villalpando-Canchola, E., & Vargas-Albores, F. (2016). Significant
loss of sensitivity and specificity in the taxonomic classification
occurs when short 16S rRNA gene sequences are used. Heliyon,2(9), e00170. doi: 10.1016/j.heliyon.2016.e00170
Matsuo, Y.,
Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T.,
… Hirota, K. (2021). Full-length 16S rRNA gene amplicon analysis
of human gut microbiota using MinIONTM nanopore
sequencing confers species-level resolution. BMC Microbiology,21(1), 35. doi: 10.1186/s12866-021-02094-5
McKnight, D. T.,
Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger,
K. R. (2018). Methods for normalizing microbiome data: an ecological
perspective. Methods in Ecology and Evolution. doi:
10.1111/2041-210X.13115
McMurdie, P. J., &
Holmes, S. (2013). phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. Plos One,8(4), e61217. doi: 10.1371/journal.pone.0061217
Oksanen, J.,
Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B.,
… Wagner, H. (2007). The vegan package. Community
Ecology.
Prodan, A.,
Tremaroli, V., Brolin, H., Zwinderman, A. H., Nieuwdorp, M., & Levin,
E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA
amplicon sequencing. Plos One, 15(1), e0227434. doi:
10.1371/journal.pone.0227434
Qian, J., Ding,
Q., Guo, A., Zhang, D., & Wang, K. (2017). Alteration in successional
trajectories of bacterioplankton communities in response to co-exposure
of cadmium and phenanthrene in coastal water microcosms.Environmental Pollution, 221, 480–490. doi:
10.1016/j.envpol.2016.12.020
Quast, C., Pruesse,
E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner,
F. O. (2013). The SILVA ribosomal RNA gene database project: improved
data processing and web-based tools. Nucleic Acids Research,41(Database issue), D590-6. doi: 10.1093/nar/gks1219
Schloss, P. D.,
Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR
amplification and sequencing artifacts on 16S rRNA-based studies.Plos One, 6(12), e27310. doi:
10.1371/journal.pone.0027310
Thompson, L. R.,
Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J.,
… Earth Microbiome Project Consortium. (2017). A communal
catalogue reveals Earth’s multiscale microbial diversity. Nature,551(7681), 457–463. doi: 10.1038/nature24621
Tremblay, J.,
Singh, K., Fern, A., Kirton, E. S., He, S., Woyke, T., … Tringe,
S. G. (2015). Primer and platform effects on 16S rRNA tag sequencing.Frontiers in Microbiology, 6, 771. doi:
10.3389/fmicb.2015.00771
Weiss, S., Xu, Z.
Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., … Knight,
R. (2017). Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome, 5(1), 27.
doi: 10.1186/s40168-017-0237-y
Woese, C. R., &
Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the
primary kingdoms. Proceedings of the National Academy of Sciences
of the United States of America, 74(11), 5088–5090. doi:
10.1073/pnas.74.11.5088
Woese, C. R. (1987).
Bacterial evolution. Microbiological Reviews, 51(2),
221–271. doi: 10.1128/mr.51.2.221-271.1987
Yang, B., Wang,
Y., & Qian, P. Y. (2016). Sensitivity and correlation of hypervariable
regions in 16S rRNA genes in phylogenetic analysis. BMC
Bioinformatics, 17, 135. doi: 10.1186/s12859-016-0992-y
Yu, Z.,
García-González, R., Schanbacher, F. L., & Morrison, M. (2008).
Evaluations of different hypervariable regions of archaeal 16S rRNA
genes in profiling of methanogens by Archaea-specific PCR and denaturing
gradient gel electrophoresis. Applied and Environmental
Microbiology, 74(3), 889–893. doi: 10.1128/AEM.00684-07
Zhang, W., Fan,
X., Shi, H., Li, J., Zhang, M., Zhao, J., & Su, X. (2023).
Comprehensive Assessment of 16S rRNA Gene Amplicon Sequencing for
Microbiome Profiling across Multiple Habitats. Microbiology
Spectrum, 11(3), e0056323. doi: 10.1128/spectrum.00563-23