Acknowledgements
We would like to thank A. Chatzinotas and S. Tem for the valuable discussions. We acknowledge support by the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118, 202548816). This study has been partly performed using the High-Performance Computing (HPC) Cluster EVE, a joint effort of both the Helmholtz Centre for Environmental Research - UFZ and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.
Bibliography
Abellan-Schneyder, I., Matchado, M. S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., … Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. MSphere, 6(1). doi: 10.1128/mSphere.01202-20
Brooks, J. P., Edwards, D. J., Harwich, M. D., Rivera, M. C., Fettweis, J. M., Serrano, M. G., … Buck, G. A. (2015). The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiology, 15, 66. doi: 10.1186/s12866-015-0351-6
Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16S rRNA region choice on bacterial community metabarcoding results. Scientific Data,6, 190007. doi: 10.1038/sdata.2019.7
Callahan, Benjamin J, McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis.The ISME Journal, 11(12), 2639–2643. doi: 10.1038/ismej.2017.119
Callahan, Ben J, Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016). Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. [version 2; peer review: 3 approved].F1000Research, 5, 1492. doi: 10.12688/f1000research.8986.2
Callahan, B J, McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi: 10.1038/nmeth.3869
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.Proceedings of the National Academy of Sciences of the United States of America, 108 Suppl 1(Suppl 1), 4516–4522. doi: 10.1073/pnas.1000080107
Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324. doi: 10.1146/annurev-ecolsys-120213-091540
Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases.Clinical Microbiology Reviews, 17(4), 840–862, table of contents. doi: 10.1128/CMR.17.4.840-862.2004
Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., … Treangen, T. J. (2022). Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nature Methods, 19(7), 845–853. doi: 10.1038/s41592-022-01520-4
Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P., & Reid, G. (2013). High throughput sequencing methods and analysis for microbiome research.Journal of Microbiological Methods, 95(3), 401–414. doi: 10.1016/j.mimet.2013.08.011
Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M. J., & Cotter, P. D. (2016). 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 16(1), 123. doi: 10.1186/s12866-016-0738-z
Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L., … Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 5029. doi: 10.1038/s41467-019-13036-1
Jurburg, S. D., Buscot, F., Chatzinotas, A., Chaudhari, N. M., Clark, A. T., Garbowski, M., … Heintz-Buschart, A. (2022). The community ecology perspective of omics data. Microbiome, 10(1), 225. doi: 10.1186/s40168-022-01423-8
Jurburg, S. D., Cornelissen, J. J. B. W. J., de Boer, P., Smits, M. A., & Rebel, J. M. J. (2019). Successional Dynamics in the Gut Microbiome Determine the Success of Clostridium difficile Infection in Adult Pig Models.Frontiers in Cellular and Infection Microbiology, 9, 271. doi: 10.3389/fcimb.2019.00271
Jurburg, S. D., Konzack, M., Eisenhauer, N., & Heintz-Buschart, A. (2020). The archives are half-empty: an assessment of the availability of microbial community sequencing data. Communications Biology, 3(1), 474. doi: 10.1038/s42003-020-01204-9
Jurburg, S. D., Nunes, I., Stegen, J. C., Le Roux, X., Priemé, A., Sørensen, S. J., & Salles, J. F. (2017). Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. Scientific Reports, 7, 45691. doi: 10.1038/srep45691
Kang, X., Deng, D. M., Crielaard, W., & Brandt, B. W. (2021). Reprocessing 16S rRNA Gene Amplicon Sequencing Studies: (Meta)Data Issues, Robustness, and Reproducibility. Frontiers in Cellular and Infection Microbiology, 11, 720637. doi: 10.3389/fcimb.2021.720637
Louca, S., Mazel, F., Doebeli, M., & Parfrey, L. W. (2019). A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biology,17(2), e3000106. doi: 10.1371/journal.pbio.3000106
Marizzoni, M., Gurry, T., Provasi, S., Greub, G., Lopizzo, N., Ribaldi, F., … Cattaneo, A. (2020). Comparison of Bioinformatics Pipelines and Operating Systems for the Analyses of 16S rRNA Gene Amplicon Sequences in Human Fecal Samples. Frontiers in Microbiology, 11, 1262. doi: 10.3389/fmicb.2020.01262
Martínez-Porchas, M., Villalpando-Canchola, E., & Vargas-Albores, F. (2016). Significant loss of sensitivity and specificity in the taxonomic classification occurs when short 16S rRNA gene sequences are used. Heliyon,2(9), e00170. doi: 10.1016/j.heliyon.2016.e00170
Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., … Hirota, K. (2021). Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiology,21(1), 35. doi: 10.1186/s12866-021-02094-5
McKnight, D. T., Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger, K. R. (2018). Methods for normalizing microbiome data: an ecological perspective. Methods in Ecology and Evolution. doi: 10.1111/2041-210X.13115
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One,8(4), e61217. doi: 10.1371/journal.pone.0061217
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., … Wagner, H. (2007). The vegan package. Community Ecology.
Prodan, A., Tremaroli, V., Brolin, H., Zwinderman, A. H., Nieuwdorp, M., & Levin, E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. Plos One, 15(1), e0227434. doi: 10.1371/journal.pone.0227434
Qian, J., Ding, Q., Guo, A., Zhang, D., & Wang, K. (2017). Alteration in successional trajectories of bacterioplankton communities in response to co-exposure of cadmium and phenanthrene in coastal water microcosms.Environmental Pollution, 221, 480–490. doi: 10.1016/j.envpol.2016.12.020
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research,41(Database issue), D590-6. doi: 10.1093/nar/gks1219
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies.Plos One, 6(12), e27310. doi: 10.1371/journal.pone.0027310
Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., … Earth Microbiome Project Consortium. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature,551(7681), 457–463. doi: 10.1038/nature24621
Tremblay, J., Singh, K., Fern, A., Kirton, E. S., He, S., Woyke, T., … Tringe, S. G. (2015). Primer and platform effects on 16S rRNA tag sequencing.Frontiers in Microbiology, 6, 771. doi: 10.3389/fmicb.2015.00771
Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., … Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 27. doi: 10.1186/s40168-017-0237-y
Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74(11), 5088–5090. doi: 10.1073/pnas.74.11.5088
Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51(2), 221–271. doi: 10.1128/mr.51.2.221-271.1987
Yang, B., Wang, Y., & Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17, 135. doi: 10.1186/s12859-016-0992-y
Yu, Z., García-González, R., Schanbacher, F. L., & Morrison, M. (2008). Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 74(3), 889–893. doi: 10.1128/AEM.00684-07
Zhang, W., Fan, X., Shi, H., Li, J., Zhang, M., Zhao, J., & Su, X. (2023). Comprehensive Assessment of 16S rRNA Gene Amplicon Sequencing for Microbiome Profiling across Multiple Habitats. Microbiology Spectrum, 11(3), e0056323. doi: 10.1128/spectrum.00563-23