R E F E R E N C E S
Abarenkov,
K., Nilsson, R. H., Larsson, K. H., Alexander, I. J., Eberhardt, U.,
Erland, S., Pennanen, T. (2010). The UNITE database for molecular
identification of fungi–recent updates and future perspectives.New Phytologist , 186 (2), 281-285.
https://10.1111/j.1469-8137.2009.03160.x
Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison
of soil quality indexing methods for vegetable production systems in
Northern California. Agriculture Ecosystem & Environment ,90 (1), 25-45. https://10.1016/S0167-8809(01)00174-8
Armenise,
E., Redmile-Gordon, M. A., Stellacci, A. M., Ciccarese, A., & Rubino,
P. (2013). Developing a soil quality index to compare soil fitness for
agricultural use under different managements in the Mediterranean
environment. Soil & Tillage Research , 130 , 91-98.
https://10.1016/j.still.2013.02.013
Baldrian,
P. (2017). Microbial activity and the dynamics of ecosystem processes in
forest soils. Current Opinion In Microbiology , 37 ,
128-134. https://10.1016/j.mib.2017.06.008
Bastida,
F., Luis Moreno, J., Hernández, T., & García, C. (2006).
Microbiological degradation index of soils in a semiarid climate.Soil biology & biochemistry , 38 (12), 3463-3473.
https://10.1016/j.soilbio.2006.06.001
Berhe,
A. A., Harte, J., Harden, J. W., & Torn, M. S. (2007). The Significance
of the Erosion-induced Terrestrial Carbon Sink. Bioscience ,57 (4). https://10.1641/B570408
Bernhard
Flury, & Riedwyl, H. (1988). Multivariate Statistics. A Practical
Approach . London: Chapman and Hall.
Bünemann,
E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede,
R., Brussaard, L. (2018). Soil quality–A critical review. Soil
Biology and Biochemistry , 120 , 105-125.
https://10.1016/j.soilbio.2018.01.030
Byrne,
B. M., & Erlbaums, L. (2009). Structural equation modeling with
AMOS: basic concepts, applications, and programming . London: Routledge.
Caporaso,
J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., &
Costello, E. E. A. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nature Methods , 7 , 335-336.
https://10.1038/nmeth0510-335
Carrino-Kyker,
S. R., Kluber, L. A., Petersen, S. M., Coyle, K. P., Hewins, C. R.,
Deforest, J. L., Anderson, I. (2016). Mycorrhizal fungal communities
respond to experimental elevation of soil pH and P availability in
temperate hardwood forests. FEMS microbiology ecology ,92 (3), w24. https://10.1093/femsec/fiw024
Chagnon,
P., Bradley, R. L., Maherali, H., & Klironomos, J. N. (2013). A
trait-based framework to understand life history of mycorrhizal fungi.Trends in Plant Science , 18 (9), 484-491.
https://10.1016/j.tplants.2013.05.001
Cooke,
R. C., & Rayner, A. (1984). Ecology of saprotrophic fungi .
London: Longman.
Coughlan,
A. P., Dalpé, Y., Lapointe, L., & Piché, Y. (2000). Soil pH-induced
changes in root colonization, diversity, and reproduction of symbiotic
arbuscular mycorrhizal fungi from healthy and declining maple forests.Canadian Journal of Forest Research , 30 (10), 1543-1554.
https://10.1139/cjfr-30-10-1543
Deacon,
J. (2006). Fungal biology. Mycological Research , 110 (1),
121-122. https://10.1016/j.mycres.2005.11.002
Delgado-Baquerizo,
M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J.,
Encinar, D., Singh, B. K. (2016). Microbial diversity drives
multifunctionality in terrestrial ecosystems. Nature
Communications , 7 (1), 1-8. https://10.1038/ncomms10541
Doran,
J. W., & Parkin, T. B. (1996). Quantitative indicators of soil quality:
a minimum data set. Soil Science Society of America , 25-37.
https://10.2136/sssaspecpub49.c2
Duhamel,
M., Wan, J., Bogar, L. M., Segnitz, R. M., Duncritts, N. C., & Peay, K.
G. (2019). Plant selection initiates alternative successional
trajectories in the soil microbial community after disturbance.Ecological Monographs , 89 (3), e1367.
https://10.1002/ecm.1367
Edgar,
R. C. (2013). UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nature Methods , 10 (10), 996-998.
https://10.1038/nmeth.2604
FAO
(2015). Global Forest Resources
Assessment 2015: how are the world’s forests changing? In: Food and
Agriculture Organization of the United Nations.
Frankenberger,
W., & Tabatabai, M. A. (1991). L-glutaminase activity of soil.Soil Biology and Biochemistry , 23 (9), 869-874.
https://10.1016/0038-0717(91)90099-6
Fraser,
F. C., Hallett, P. D., Wookey, P. A., Hartley, I. P., & Hopkins, D. W.
(2013). How do enzymes catalysing soil nitrogen transformations respond
to changing temperatures? Biology and Fertility of Soils ,49 (1), 99-103. https://10.1007/s00374-012-0722-1
Grayston,
S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in
trees, in comparison with annual plants: the importance of root
exudation and its impact on microbial activity and nutrient
availability. Applied Soil Ecology , 5 (1), 29-56.
https://10.1016/S0929-1393(96)00126-6
Grime,
J. P. (1979). Plant strategies and vegetation processes. Biologia
Plantarum , 23 (4), 254. https://10.1007/BF02895358
Guillaume,
T., Damris, M., & Kuzyakov, Y. (2015). Losses of soil carbon by
converting tropical forest to plantations: erosion and decomposition
estimated by δ13C. Global Change Biology , 21 (9),
3548-3560. https://10.1111/gcb.12907
Gunina,
A., Smith, A. R., Godbold, D. L., Jones, D. L., & Kuzyakov, Y. (2017).
Response of soil microbial community to afforestation with pure and
mixed species. Plant and Soil , 412 (1-2), 357-368.
https://10.1007/s11104-016-3073-0
Hepper,
C. M. (1984). Regulation of spore germination of the
vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH.Transactions of the British Mycological Society , 83 (1),
154-156. https://10.1016/S0007-1536(84)80258-2
Johnson,
N. C., Rowland, D. L., Corkidi, L., & Allen, E. B. (2008). Plant
winners and losers during grassland N-eutrophication differ in biomass
allocation and mycorrhizas. Ecology , 89 (10), 2868-2878.
https://10.1890/07-1394.1
Jones,
D. L., Hodge, A., & Kuzyakov, Y. (2004). Plant and mycorrhizal
regulation of rhizodeposition. New Phytologist , 163 (3),
459-480. https://10.1111/j.1469-8137.2004.01130.x
Kamaa,
M., Mburu, H., Blanchart, E., Chibole, L., Chotte, J., Kibunja, C., &
Lesueur, D. (2011). Effects of organic and inorganic fertilization on
soil bacterial and fungal microbial diversity in the Kabete long-term
trial, Kenya. Biology and Fertility of Soils , 47 (3),
315-321. https://10.1007/s00374-011-0539-3
Kanazawa, S., & Kiyota, H. (2000). Effect of fertilizer and manure
application on L-glutaminase and L-asparaginase activities in soils.Soil science and plant nutrition , 46 (3), 741-744.
https://10.1080/00380768.2000.10409139
Kerfahi,
D., Tripathi, B. M., Dong, K., Go, R., & Adams, J. M. (2016).
Rainforest conversion to rubber plantation may not result in lower soil
diversity of bacteria, fungi, and nematodes. Microbial ecology ,72 (2), 359-371. https://10.1007/s00248-016-0790-0
Krashevska,
V., Klarner, B., Widyastuti, R., Maraun, M., & Scheu, S. (2015). Impact
of tropical lowland rainforest conversion into rubber and oil palm
plantations on soil microbial communities. Biology and fertility
of soils , 51 (6), 697-705. https://10.1007/s00374-015-1021-4
Lan, G., Wu, Z., Yang, C., Sun, R., Chen, B., & Zhang, X. (2021).
Forest conversion alters the structure and functional processes of
tropical forest soil microbial communities. Land Degradation &
Development , 32 (2), 613-627. https://10.1002/ldr.3757
Lauber,
C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The
influence of soil properties on the structure of bacterial and fungal
communities across land-use types. Soil Biology and Biochemistry ,40 (9), 2407-2415. https://10.1016/j.soilbio.2008.05.021
Liu,
T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., Yan, W. (2020).
Soil organic matter, nitrogen and pH driven change in bacterial
community following forest conversion. Forest Ecology and
Management , 477 , 118473. https://10.1016/j.foreco.2020.118473
Lundell,
T. K., Makela, M. R., & Hilden, K. (2010). Lignin-modifying enzymes in
filamentous basidiomycetes–ecological, functional and phylogenetic
review. Journal of basic microbiology , 50 (1), 5-20.
https://10.1002/jobm.200900338
Mcguire,
K. L., D Angelo, H., Brearley, F. Q., Gedallovich, S. M., Babar, N.,
Yang, N., Fierer, N. (2015). Responses of soil fungi to logging and oil
palm agriculture in Southeast Asian tropical forests. Microbial
Ecology , 69 (4), 733-747. https://10.1007/s00248-014-0468-4
Nakayama,
M., Imamura, S., Taniguchi, T., & Tateno, R. (2019). Does conversion
from natural forest to plantation affect fungal and bacterial
biodiversity, community structure, and co-occurrence networks in the
organic horizon and mineral soil? Forest Ecology and Management ,446 , 238-250. https://10.1016/j.foreco.2019.05.042
Nguyen,
N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J.,
Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing
fungal community datasets by ecological guild. Fungal Ecology ,20 , 241-248. https://10.1016/j.funeco.2015.06.006
Osono,
T. (2006). Role of phyllosphere fungi of forest trees in the development
of decomposer fungal communities and decomposition processes of leaf
litter. Canadian Journal of Microbiology , 52 (8), 701-716.
https://10.1139/w06-023
Peay,
K. G., Baraloto, C., & Fine, P. V. A. (2013). Strong coupling of plant
and fungal community structure across western Amazonian rainforests.The ISME Journal , 7 (9), 1852-1861.
https://10.1038/ismej.2013.66
Põlme,
S., Bahram, M., Yamanaka, T., Nara, K., Dai, Y. C., Grebenc, T.,
Tedersoo, L. (2013). Biogeography of ectomycorrhizal fungi associated
with alders (Alnus spp.) in relation to biotic and abiotic variables at
the global scale. New phytologist , 198 (4), 1239-1249.
https://10.1111/nph.12170
Prescott,
C. E., & Grayston, S. J. (2013). Tree species influence on microbial
communities in litter and soil: Current knowledge and research needs.Forest Ecology and Management , 309 , 19-27.
https://10.1016/j.foreco.2013.02.034
Raiesi,
F. (2017). A minimum data set and soil quality index to quantify the
effect of land use conversion on soil quality and degradation in native
rangelands of upland arid and semiarid regions. Ecological
Indicators , 75 , 307-320. https://10.1016/j.ecolind.2016.12.049
Steidinger,
B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A.,
Reich, P. B., Peay, K. G. (2019). Climatic controls of decomposition
drive the global biogeography of forest-tree symbioses. Nature ,569 (7756), 404-408. https://10.1038/s41586-019-1128-0
Sterkenburg,
E., Bahr, A., Brandstrom, D. M., Clemmensen, K. E., & Lindahl, B. D.
(2015). Changes in fungal communities along a boreal forest soil
fertility gradient. New phytologist , 207 (4), 1145-1158.
https://10.1111/nph.13426
Stursova,
M., Zifcakova, L., Leigh, M. B., Burgess, R., & Baldrian, P. (2012).
Cellulose utilization in forest litter and soil: identification of
bacterial and fungal decomposers. FEMS microbiology ecology ,80 (3), 735-746. https://10.1111/j.1574-6941.2012.01343.x
Sun,
R., Dsouza, M., Gilbert, J. A., Guo, X., Wang, D., Guo, Z., Chu, H.
(2016). Fungal community composition in soils subjected to long-term
chemical fertilization is most influenced by the type of organic matter.Environmental Microbiology , 18 (12), 5137-5150.
https://10.1111/1462-2920.13512
Tripathi,
B. M., Edwards, D. P., Mendes, L. W., Kim, M., Dong, K., Kim, H., &
Adams, J. M. (2016). The impact of tropical forest logging and oil palm
agriculture on the soil microbiome. Molecular Ecology ,25 (10), 2244-2257. https://10.1111/mec.13620
Uroz,
S., Buée, M., Deveau, A., Mieszkin, S., & Martin, F. (2016). Ecology of
the forest microbiome: Highlights of temperate and boreal ecosystems.Soil Biology and Biochemistry , 103 , 471-488.
https://10.1016/j.soilbio.2016.09.006
Vailaya,
A., Cline, M. S., Workman, C., Bader, G. D., Isserlin, R., Creech, M.,
Ideker, T. (2007). Integration of biological networks and gene
expression data using Cytoscape. Nature protocols , 2 (10),
2366-2382. https://10.1038/nprot.2007.324
Van
der Linde, S., Suz, L. M., Orme, C. D. L., Cox, F., Andreae, H., Asi,
E., Bidartondo, M. I. (2018). Environment and host as large-scale
controls of ectomycorrhizal fungi. Nature , 558 (7709),
243-248. https://10.1038/s41586-018-0189-9
Wang,
X., Zhang, W., Liu, Y., Jia, Z., Li, H., Yang, Y., Zhang, X. (2021).
Identification of microbial strategies for labile substrate utilization
at phylogenetic classification using a microcosm approach. Soil
Biology and Biochemistry , 153 , 107970.
https://10.1016/j.soilbio.2020.107970
Watanabe,
K. (2010). Detection of protease genes in field soil applied with liquid
livestock feces and speculation on their function and origin. Soil
Science & Plant Nutrition , 55 (1), 42-52.
https://10.1111/j.1747-0765.2008.00323.x
White,
T. J., Bruns, T., Lee, S., & Taylor, J. (1990). 38-Amplification and
direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:
Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.),PCR Protocols (pp. 315-322). San Diego: Academic Press.
Wu,
H., Xiang, W., Ouyang, S., Forrester, D. I., Zhou, B., Chen, L., Peng,
C. (2019). Linkage between tree species richness and soil microbial
diversity improves phosphorus bioavailability. Functional
Ecology , 33 (8), 1549-1560. https://10.1111/1365-2435.13355
Yakov,
Kuzyakov, A., Gunina, K., Zamanian, J., Tian, Y., X, L., Alharbi, L.
(2020). New approaches for evaluation of soil health, sensitivity and
resistance to degradation. Frontiers of Agricultural Science and
Engineering , v.7 (03), 56-62. https://10.15302/J-FASE-2020338
Yang, K., Zhu, J., Xu, S., & Zheng, X. (2018). Conversion from
temperate secondary forests into plantations (Larix spp.): Impact on
belowground carbon and nutrient pools in northeastern China. Land
Degradation & Development , 29 (11), 4129-4139.
https://10.1002/ldr.3169
Yang,
M., Yang, D., & Yu, X. (2018). Soil microbial communities and enzyme
activities in sea-buckthorn (Hippophae rhamnoides) plantation at
different ages. PLoS One , 13 (1), e190959.
https://10.1371/journal.pone.0190959
Zarafshar,
M., Bazot, S., Matinizadeh, M., Bordbar, S. K., Rousta, M. J., Kooch,
Y., Negahdarsaber, M. (2020). Do tree plantations or cultivated fields
have the same ability to maintain soil quality as natural forests?Applied Soil Ecology , 151 , 103536.
https://10.1016/j.apsoil.2020.103536
Zhang,
Y., Xu, X., Li, Z., Liu, M., Xu, C., Zhang, R., & Luo, W. (2019).
Effects of vegetation restoration on soil quality in degraded karst
landscapes of southwest China. Science of The Total Environment ,650 , 2657-2665. https://10.1016/j.scitotenv.2018.09.372