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Abstract. In this paper we present a new discrete retarded Gronwall-Bellman type inequal-

ity. As applications, the dynamics of some delay difference equations are studied. First, the

asymptotic behavior of solutions for scalar difference equation ∆x(n) = −a(n)x(n)+B(n, xn) is

discussed, and some new criterion on the asymptotic stability of the zero solution are obtained

under weaker assumptions. Then the dissipativity of a nonautonomous delay difference system

with superlinear nonlinearities is investigated. By using the inequalities established here, it is

shown that the discrete set-valued process generated by the system possesses a unique global

pullback attractor.
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1 Introduction

In practice time lags are often inevitable. This gives birth to various kinds of

mathematical models of retarded differential and difference equations. The study

of the dynamical behavior and related control problems of these models naturally

lead to different Gronwall-Bellman type inequalities involving time delays. A

typical example is the well-known Halanay’s inequality [13] which plays a crucial

role in the investigation of delay differential equations. Since the Halanay’s work

there have appeared numerous retarded differential/integral inequalities and their

discrete analogs; see e.g. [1, 4, 5, 14, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31].

In contrast to non-retarded evolution equations, generally the qualitative anal-

ysis of retarded ones often encounter more difficulties. Although the existing in-

equalities in the literature as mentioned above provide efficient tools in dealing

with such equations, it is still a difficult task to derive needed estimates for their

solutions. In fact, it is often the case that one has to fall his back on non-retarded

1This work was supported by the National Natural Science Foundation of China [11871368].
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Gronwall-Bellman type inequalities when studying retarded problems (particu-

larly in the case of non-constant delays), which makes the calculations in the

argument more or less involved and restrictive.

In a recent paper [18], Li et al. established a quite general retarded Gronwall-

Bellman type integral inequality:

y(t) ≤ E(t, τ)‖yτ‖+
∫ t
τ
K1(t, s)‖ys‖ds

+
∫∞
t
K2(t, s)‖ys‖ds+ ρ, t ≥ τ ≥ 0,

(1.1)

where E, K1 and K2 are appropriate nonnegative functions on R+ × R+, ρ ≥ 0

is a constant, y is a nonnegative function on [−r,∞) for some given r ≥ 0, and

yt denotes the lift of y in C([−r, 0]),

yt(s) = y(t+ s), s ∈ [−r, 0].

By developing some new techniques the authors obtained several uniform decay

estimates for the functions y satisfying the inequality, which turns out to be very

helpful in studying the dynamical behavior of delay differential equations (see

e.g. [18, 30]). In this work we give a discrete counterpart of (1.1), namely, we

extend the main results in [18] to the following discrete inequality:

y(n) ≤ f(n,m)‖ym‖+
∑n

k=m g1(n, k)‖yk‖

+
∑∞

k=n+1 g2(n, k)‖yk‖+ ρ, n ≥ m,m ∈ Z+.
(1.2)

As seen in the literature, such an extension is in general not immediate because

one has to overcome many technical difficulties brought by the lack of continuity.

This is also the case of this present work since the argument involved in establish-

ing the inequality (1.1) in [18] depends heavily on the continuity of the function

y(t) in t and the integrals with respect to the variation of the integral domains.

Applications of inequalities are always of particular interest. As an example,

we first consider the asymptotic stability of scalar difference equation

∆+x(n) = −a(n)x(n) +B(n, xn), n ∈ Z+, (1.3)

where ∆+x(n) := x(n+ 1)−x(n), xn denotes the lift of the sequence x = x(n) in

the space S consisting of mappings (sequences) from [−r, 0] ∩ Z to R1 for some

given r ∈ Z+, and B is a function on Z+ × S satisfying

|B(n, q)| ≤ b(n)‖q‖, n ∈ Z+, q ∈ S.

This equation is closely related to discrete population models and financial math-

ematics, etc. In [21], Liz et al. considered the special case where a(n) ≡ a and

B(n, xn) = b max
0≤k≤r

{x(n− k)}, n ∈ Z+.
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They first established a new discrete Halanay-type inequality. Then by applying

the inequality they achieved a set of exponential stability criteria for the zero

solution of (1.3) under the assumption that

0 < b < a ≤ 1. (1.4)

A slightly modified version of B(n, xn) is considered in [1, 29], where the au-

thors proved some similar results as mentioned above. It is worth mentioning

that the asymptotic behavior of (1.3) with positive varying coefficients a(n) and

B(n, xn) = b(n) max0≤k≤r{x(n−k)} was studied in [19, 25, 28] etc. Once again by

using some generalized discrete Halanay-type inequalities the authors obtained

some sufficient conditions for the asymptotic (or exponential) stability of the zero

solution under the hypothesis a(n)− b(n) ≥ δ > 0 or some similar ones. Similar

results can be found in [5]. Let us also mention the nice work of Liz et al. [22],

in which the authors paid some special attention to the case where a(n) ≡ a and

B(n, xn) = −bf(n, x(n), · · · , x(n− r)). Here a, b are constants, b > 0, and a can

be allowed to be negative.

In this paper we consider the more general case where a(n) can be even allowed

to change sign. We will present some new criteria concerning the asymptotic

stability and exponential stability for the zero solution of the equation by applying

a particular case of the inequality (1.2). Furthermore, if a(n) and B satisfy some

weaker hypotheses, we give some uniform estimates on the growth rate of the

solutions of the equation.

Our second example concerns the dissipativity of equation

∆−y(n) = f(n, y(n)) + g(n, y(n− r(n))), y(n) ∈ Rd, n ∈ Z+, (1.5)

where ∆−y(n) := y(n) − y(n − 1), f and g are mappings from Z+ × Rd to

Rd, and 0 ≤ r(n) ≤ r (n ∈ Z+) for some fixed r ∈ Z+. When f and g are

sublinear in the second variable, this problem has already been studied in [8], in

which the authors studied the uniform ultimate boundedness of solutions (which

is equivalent to the bounded k-dissipativity defined in [11] (see [11, page 85]))

by using the Razumikhin-Lyapunov method. The corresponding continuous time

versions can be found in [6, 9, 10] and references cited therein. However, in the

superlinear case few results in this line can be found in the literature. This is

precisely the motivation of our consideration here. We allow both f and g to be

superlinear. Suppose that f and g satisfy the following dissipativity condition:

there exist p > q ≥ 1 and positive constants α, α1, β and β1 such that

〈f(n, y), y〉 ≤ −α|y|p+1 + α1, |g(n, y)| ≤ β|y|q + β1
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for all y ∈ Rd. We show that system (1.5) has a global pullback attractor.

This paper is organized as follows. Section 2 is concerned with the inequality

(1.2), and Section 3 is devoted to the asymptotic stability analysis of equation

(1.3). In section 4 we prove the existence of a pullback attractor for the delay

difference equation (1.5).

2 A Retarded Discrete Inequality

Let Z be the set of integers, and Rd the usual Euclidean space. An interval J

in Z means a subset of Z for which there is an interval J̃ in R1 such that

J = J̃ ∩ Z.

Since we only concerns the discrete case here, given an interval I ∈ R1, we use

the same notation I to denote the interval J := I ∩ Z in Z. For instance, we use

the notation [a, b] to denote the interval [a, b] ∩ Z in Z.

Let J be an interval in Z. A sequence on J with values in a given set Y

is a mapping from J to Y . We use the notation S (J ; Y ) to denote the set of

sequences on J with values in Y . If J is finite and Y is a Banach space with

norm | · |, the set S (J ; Y ) is a Banach space as well with norm

‖y‖ = max
n∈J
|y(n)|, y ∈ S (J ; Y ) .

Let r ∈ Z+. The lift of y ∈ S (J ; Y ) in S := S([−r, 0]; Y ), denoted by ŷ = yn
(n ∈ J), is a sequence on J taking values in S defined by

yn(k) =

{
y(n+ k), if n+ k ∈ J ;

0, otherwise,
k ∈ [−r, 0], n ∈ J.

For convenience in statement, we also make the following convention:

Convention. Let xi (i ∈ J) be a sequence of real numbers on interval J ⊂ Z. If

m,n ∈ J and m > n, then we assign

n∑
i=m

xi = 0,
n∏

i=m

xi = 1.

2.1 A retarded discrete inequality

Denote by S +(Q) the family of nonnegative functions on Q := Z+ × Z+. Set

F = {f ∈ S +(Q) : lim
n→∞

f(n+m,m) = 0 uniformly w.r.t. m ∈ Z+},
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G1 =

{
g ∈ S +(Q) :

n∑
k=0

g(n, k) <∞ for all n ∈ Z+

}
,

and

G2 =

{
g ∈ S +(Q) :

∞∑
k=n+1

g(n, k) <∞ for all n ∈ Z+

}
.

For f ∈ F and (g1, g2) ∈ G1 × G2, we write

ß(f) := sup
n≥m≥0

f(n,m),

and

κ(g1, g2) := sup
n≥m≥0

(
n∑

k=m

g1(n, k) +
∞∑

k=n+1

g2(n, k)

)
.

Let r ∈ Z+, f ∈ F , and gi ∈ Gi (i = 1, 2). Consider the retarded discrete

Gronwall-Bellman type inequality

y(n) ≤ f(n,m)‖ym‖+
∑n

k=m g1(n, k)‖yk‖

+
∑∞

k=n+1 g2(n, k)‖yk‖+ ρ, n ≥ m,m ∈ Z+,
(2.1)

where ρ ≥ 0 is a constant, and yn denotes the lift of y = y(n) in S = S([−r, 0]; R+).

For convenience in statement, we call a sequence y ∈ S([−r,∞); R+) satisfying

(2.1) a solution of (2.1). Denote by Lr(f ; g1, g2; ρ) the solution set of (2.1).

One of our main results is summarized in the theorem below:

Theorem 2.1 Suppose

ß(f) ≤ ß <∞, κ(g1, g2) ≤ κ <∞.

Then the following two assertions hold.

(1) If κ < 1, then for any R, ε > 0, there exists N > 0 such that

‖yn‖ < µρ+ ε, n ≥ N

for all bounded sequence y ∈ Lr(f ; g1, g2; ρ) with ‖y0‖ ≤ R, where

µ = 1/(1− κ). (2.2)

(2) If κ < 1/(1 + ß), then there exist M,σ > 0 with σ < 1 such that

‖yn‖ ≤M‖y0‖σn + γρ, n ∈ Z+ (2.3)

for all bounded sequences y ∈ Lr(f ; g1, g2; ρ), where

γ = (µ+ 1)/(1− κc), c = max{ß/(1− κ), 1}. (2.4)
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Remark 2.2 One trivially checks that if κ < 1/(1 + ß), then κc < 1.

By (2.2) we also have

κµ+ 1 = µ. (2.5)

A simpler but important case of (2.1) is that where g2 vanishes. In such a

case the inequality reads as below:

y(n) ≤ f(n,m)‖ym‖+
∑n

k=m g(n, k)‖yk‖+ ρ, n ≥ m,m ∈ Z+. (2.6)

We show that if κ(g1, g2) = κ(g, 0) ≤ κ < 1, then any solution y of (2.6) is

automatically bounded. Thus the boundedness requirement on y in Theorem 2.1

can be removed. Consequently one has

Theorem 2.3 Let ß, κ, µ and γ be the constants as given in Theorem 2.1.

(1) If κ < 1, then for any R, ε > 0, there exists N > 0 such that

‖yn‖ < µρ+ ε, n ∈ [N,∞)

for all y ∈ Lr(f ; g, 0; ρ) with ‖y0‖ ≤ R.

(2) If κ < 1/(1 + ß), then there exist positive constants M and σ with σ < 1

such that for all y ∈ Lr(f ; g, 0; ρ),

‖yn‖ ≤M‖y0‖σn + γρ, n ∈ Z+.

2.2 Proof of Theorem 2.1

To prove Theorem 2.1, we first give a boundedness estimate for solutions of (2.1).

Lemma 2.4 Assume κ < 1. Then for any bounded sequence y ∈ Lr(f ; g1, g2; ρ),

‖yn‖ ≤ c‖y0‖+ µρ, n ∈ Z+, (2.7)

where c, µ are the constants given in Theorem 2.1.

Proof. The proof can be obtained by slightly modifying the one for [18, Lemma

2.1]. We omit the details. �

Remark 2.5 Let y ∈ Lr(f ; g1, g2; ρ). For ` ∈ Z+, if we set ỹ(n) = y(n+ `) and

define

f̃(n,m) = f(n+ `,m+ `), g̃i(n,m) = gi(n+ `,m+ `)(i = 1, 2)
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for n,m ∈ Z+, then one easily checks that ỹ ∈ Lr(f̃ ; g̃1, g̃2; ρ) with

ß(f̃) ≤ ß(f) ≤ ß, κ(g̃1, g̃2) ≤ κ(g1, g2) ≤ κ < 1.

Therefore if y is bounded, we infer from Lemma 2.4 that

‖yn+`‖ ≤ c‖yn‖+ µρ, n, ` ∈ Z+. (2.8)

Proof of Theorem 2.1. (1) We first show that

lim sup
n→∞

‖yn‖ ≤ µρ (2.9)

for any bounded sequence y ∈ Lr(f ; g1, g2; ρ). Let us argue by contradiction and

suppose that

lim sup
n→∞

‖yn‖ = µρ+ δ

for some δ > 0. Pick a monotone sequence kn →∞ so that limn→∞ y(kn) = µρ+δ.

For any ε > 0, take a T ∈ Z+ sufficiently large such that

‖yn‖ < µρ+ δ + ε, n ≥ T.

Then for kn ≥ T , by (2.1) we obtain that

y(kn) ≤ f(kn, T )‖yT‖+
kn∑
j=T

g1(kn, j)‖yj‖+
∞∑

j=kn+1

g2(kn, j)‖yj‖+ ρ

≤ f(kn, T )‖yT‖+ κ(µρ+ δ + ε) + ρ.

Setting n→∞ in the above inequality, we obtain that

µρ+ δ ≤ κ(µρ+ δ + ε) + ρ.

Since ε is arbitrary, one concludes that

µρ+ δ ≤ (κµ+ 1)ρ+ κδ.

Therefore by (2.5) we have δ ≤ κδ, which leads to a contradiction and justifies

the validity of (2.9).

We are now ready to complete the proof of assertion (1). Let R > 0. Set

BR = {y ∈ Lr(f ; g1, g2; ρ) : y is bounded with ‖y0‖ ≤ R}.

By (2.7) we see that BR is uniformly bounded. Thereby the envelope

y∗(n) = sup
y∈BR

y(n), n ∈ [−r,∞)
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of the family BR is well-defined, which is also bounded. We infer from (2.1) that

y(n) ≤ f(n,m)‖y∗m‖+
n∑

k=m

g1(n, k)‖y∗k‖

+
∞∑

k=n+1

g2(n, k)‖y∗k‖+ ρ, ∀ n ≥ m,m ∈ Z+

for every y ∈ BR. Further, taking the supremum of the lefthand side of the

inequality for y ∈ BR, it yields

y∗(n) ≤ f(n,m)‖y∗m‖+
n∑

k=m

g1(n, k)‖y∗k‖

+
∞∑

k=n+1

g2(n, k)‖y∗k‖+ ρ, ∀ n ≥ m,m ∈ Z+.

Hence y∗ ∈ Lr(f ; g1, g2; ρ). A direct consequence of (2.9) to y∗ then gives us

lim supn→∞ ‖y∗n‖ ≤ µρ. Therefore for any ε > 0, there is N > 0 such that

‖y∗n‖ < µρ+ ε, n ≥ N,

from which assertion (1) immediately follows.

(2) Now we assume that κ < 1/(1 + ß). To derive the exponential decay

estimate in (2.3), let us first show a temporary result:

There exists a positive number σ < 1 and a positive integer N such that

if ‖y0‖ ≤ K + γρ with K > 0, then

‖yn‖ ≤ Kσn + γρ, n ≥ N. (2.10)

For this purpose, we fix a real number

λ = (1 + κc)/2.

By Remark 2.2 we see that λ < 1. Define

η = min{m ∈ [1,∞) : ‖yn‖ ≤ λK + γρ for all n ≥ m}.

In what follows let us give an estimate for the upper bound of η.

Since γ > µ (see (2.4)) and K > 0, by (2.9) it is clear that η < ∞. We

may assume η > r + 1 (otherwise we are done). Then by the definition of η one

necessarily has

‖yη−1‖ > λK + γρ.
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For simplicity, let us write b(n) := f(n, 0). Given n ∈ [(η − 1) − r, (η − 1)],

since ‖y0‖ ≤ K + γρ, by (2.1) we deduce that

y(n) ≤ b(n)‖y0‖+
n∑
k=0

g1(n, k)‖yk‖+
∞∑

k=n+1

g2(n, k)‖yk‖+ ρ

≤ (by (2.7)) ≤ ‖bη−1‖‖y0‖+ κ(c‖y0‖+ µρ) + ρ

≤ (‖bη−1‖+ κc)‖y0‖+ (κµ+ 1)ρ

≤ (by (2.5)) ≤ (‖bη−1‖+ κc)(K + γρ) + µρ.

Therefore

λK + γρ < ‖yη−1‖ = max
n∈[(η−1)−r,(η−1)]

y(n)

≤ (‖bη−1‖+ κc)K + ((‖bη−1‖+ κc)γ + µ)ρ.
(2.11)

Take a number n0 in (0,∞) such that

f(n+m,m)γ < 1, ∀ n ≥ n0, m ∈ Z+. (2.12)

Then for every n ≥ n0 + r, we have

γ‖bn‖ = γmaxk∈[n−r,n] f(k, 0) < 1. (2.13)

If η ≤ n0 + r + 1 then we are done. Hence we assume that η > n0 + r + 1.

Then by the definition of γ (see (2.4)) and (2.13) it can be easily seen that

γ = κcγ + µ+ 1 ≥ (‖bη−1‖+ κc)γ + µ.

Thus by (2.11) it follows that λK < (‖bη−1‖+ κc)K. Therefore

‖bη−1‖ > λ− κc = (1− κc)/2 > 0. (2.14)

Take an integer n1 > 0 such that

f(n+m,m) ≤ (1− κc)/2, n ∈ [n1 + 1,∞), m ∈ Z+. (2.15)

Then by (2.14) we deduce that η ≤ n1 + r + 1. Therefore one concludes that

η ≤ N := max{n0, n1}+ r + 1.

So far we have proved that if ‖y0‖ ≤ K + γρ (K > 0) then

‖yn‖ ≤ Kλ+ γρ, n ∈ [N,∞).
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Let ỹ(n) = y(n+N), and set

f̃(n,m) = f(n+N,m+N), g̃i(n,m) = gi(n+N,m+N)(i = 1, 2)

for n, m ≥ 0. Then ỹ ∈ Lr(f̃ ; g̃1, g̃2; ρ) with

κ(g̃1, g̃2) ≤ κ(g1, g2) ≤ κ < 1/(1 + ß).

Since ‖ỹ0‖ ≤ Kλ+ γρ, the same argument as above applies to show that

‖ỹn‖ ≤ (Kλ)λ+ γρ, n ∈ [N,∞),

that is

‖yn‖ ≤ Kλ2 + γρ, n ∈ [2N,∞).

(We emphasize that the independence of the numbers n0 and n1 upon m ∈ Z+

(see (2.13) and (2.15)) plays a crucial role in the argument.) Repeating the above

procedure we finally obtain that

‖yn‖ ≤ Kλk + γρ, n ∈ [kN,∞), k = 1, 2, · · · . (2.16)

Setting

σ = exp{lnλ/(2N)}, (2.17)

one has

λk ≤ σn, n ∈ [kN, (k + 1)N ]

for all k ∈ [1,∞). The estimate (2.10) then follows from (2.16).

We are now in a position to accomplish the proof of the theorem.

Note that (2.7) implies that if ‖y0‖ = 0 then

‖yn‖ ≤ µρ ≤ γρ, n ∈ Z+,

and hence the conclusion trivially holds true. Thus we assume ‖y0‖ > 0.

Take K = ‖y0‖. Then K > 0, and ‖y0‖ = K ≤ K + γρ. Therefore by (2.10)

we have

‖yn‖ ≤ ‖y0‖σn + γρ, n ∈ [N,∞). (2.18)

On the other hand, by (2.8) we deduce that

‖yn‖ ≤ c‖y0‖+ µρ ≤ c‖y0‖+ γρ, n ∈ [0, N ].

Set

M = cσ−N . (2.19)

Then

‖yn‖ ≤ c‖y0‖+ γρ ≤Mσn‖y0‖+ γρ, n ∈ [0, N ].

Combining this with (2.18) we finally arrive at the estimate

‖yn‖ ≤M‖y0‖σn + γρ, n ∈ Z+,

which completes the proof of the theorem. �
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2.3 Proof of Theorem 2.3

Proof of Theorem 2.3. The conclusions in the theorem immediately follows

from Theorem 2.1 and the following boundedness result on solutions of (2.6). �

Lemma 2.6 Suppose κ < 1. Then

y(n) ≤ (c+ 1)‖y0‖+ µρ, n ∈ Z+ (2.20)

for all solutions y of (2.6), where µ and c are the same constants as given in

Theorem 2.1.

Proof. To prove (2.20), we show that for any ε > 0,

y(n) ≤ (c+ 1)(‖y0‖+ ε) + µρ, n ∈ Z+.

For clarity, we write ‖y0‖+ ε := Aε. Let y be a solution of (2.6). Suppose the

contrary. There would exist m ≥ 1 such that

y(m) > (c+ 1)Aε + µρ, (2.21)

y(n) ≤ (c+ 1)Aε + µρ, n ≤ m− 1. (2.22)

Hence we see that

‖ym‖ = y(m).

Therefore by (2.6) and (2.22) we deduce that

‖ym‖ = y(m) ≤ f(m, 0)‖y0‖+
m−1∑
k=0

g(m, k)‖yk‖+ g(m,m)‖ym‖+ ρ

≤ ßAε +
m−1∑
k=0

g(m, k)((c+ 1)Aε + µρ) + g(m,m)‖ym‖+ ρ.

Hence

(1− g(m,m))‖ym‖ ≤ ßAε +
m−1∑
k=0

g(m, k)((c+ 1)Aε + µρ) + ρ.

Noticing that 1− g(m,m) ≥ 1− κ > 0, by (2.21) one concludes that

(1− g(m,m))((c+ 1)Aε + µρ)

< (1− g(m,m))‖ym‖

≤ ßAε +
m−1∑
k=0

g(m, k)((c+ 1)Aε + µρ) + ρ.

(2.23)
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Thus (2.23) implies

(c+ 1)Aε <

(
ß +

m∑
k=0

g(m, k)(c+ 1)

)
Aε +

(
m∑
k=0

g(m, k)µ+ 1− µ

)
ρ

≤ (ß + κ(c+ 1))Aε + (κµ+ 1− µ)ρ

= (by (2.5)) = (ß + κ(c+ 1))Aε.

(Here we have used the assumption that
∑m

k=0 g(m, k) ≤ κ.) Hence

c+ 1 < ß + κ(c+ 1).

It follows that c+ 1 < ß/(1− κ) ≤ c, a contradiction. �

2.4 Some remarks

We finally include some remarks to conclude this section.

Remark 2.7 In most concrete examples from applications the function f(n,m)

in (2.1) takes the form:

f(n,m) = M0θ
(n−m),

where M0 is a positive constant and θ is a real number in (0, 1). In such a case

we can explicitly write out the constants n0, n1, σ and M in (2.12), (2.15), (2.19)

and (2.17) as follows:

n0 = [− logθ(M0γ)] + 1, n1 =

[
logθ

(
1− κc
2M0

)]
,

M = c
√

2/(1 + κc), σ = exp

(
ln(1 + κc)− ln2

2(M1 + r + 1)

)
,

where M1 = max{[− logθ(M0γ)] + 1, [logθ(
1−κc
2M0

)]}. Here [q] denotes the integer

part of a real number q.

Remark 2.8 Theorem 2.1 remains valid if we replace (2.1) by the following s-

lightly modified inequality: for all n ≥ m ≥ 0,

y(n) ≤ f(n,m)‖ym‖+
n−1∑
k=m

g1(n, k)‖yk‖+
∞∑
k=n

g2(n, k)‖yk‖+ ρ.

Remark 2.9 Theorem 2.1 can be seen as a generalization of the discrete inequal-

ity in [23, Lemma A.2] and [32, Theorem 1].
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Remark 2.10 Lemma 2.6 may be of independent interest in its own right. For

instance, by applying this result one can obtain the following growth estimate for

solutions of retarded difference equations:

Theorem 2.11 Assume that there is a constant α ∈ (0, 1) such that

f(k +m,m)αk → 0 as k → +∞

uniformly with respect to m ∈ Z+. Suppose that

κ̂ := sup
n≥m≥0

(
n∑

k=m

g(n, k)αn−k

)
< 1.

Then there exist M > 0 such that

‖yn‖ ≤ (M‖y0‖+ µρ)α−n, n ∈ Z+

for all solutions y of (2.6).

Proof. Multiplying both sides of inequality (2.6) with αk and noticing that

αk‖yk‖ = αk max
−r≤i≤0

y(k + i) ≤ max
−r≤i≤0

(
y(k + i)αk+i

)
= ‖ŷk‖, (2.24)

we see that

ŷ(n) ≤ f̂(n,m)αm‖ym‖+
n∑

k=m

ĝ(n, k)αk‖yk‖+ ραn

≤ f̂(n,m)‖ŷm‖+
n∑

k=m

ĝ(n, k)‖ŷk‖+ ρ, n ≥ m ≥ 0,

where

ŷ(n) = y(n)αn, f̂(n,m) = f(n,m)αn−m, ĝ(n,m) = g(n,m)αn−m.

By virtue of Lemma 2.6 follows that

‖ŷn‖ ≤ (c+ 1)‖ŷ0‖+ µρ, n ≥ 0.

Hence by (2.24) we conclude that

‖yn‖ ≤ (M‖y0‖+ µρ)α−n, n ≥ 0,

where M = (c+ 1)α−r, which completes the proof of the theorem. �

Remark 2.12 Theorem 2.3, Lemma 2.6 and Theorem 2.11 remain valid if we

replace (2.6) by the following slightly modified inequality:

y(n) ≤ f(n,m)‖ym‖+
n−1∑
k=m

g(n, k)‖yk‖+ ρ, ∀ n ≥ m ≥ 0.
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3 On the Asymptotic Behavior of a Scalar Delay

Difference Equation

Let r ∈ Z+. Consider the scalar delay difference equation:

∆+x(n) = −a(n)x(n) +B(n, xn), n ∈ Z+, (3.1)

where ∆+x(n) := x(n + 1) − x(n), xn is the lift of the sequence x = x(n) in

S := S ([−r, 0];R1), and B(n, xn) satisfies

|B(n, S)| ≤ b(n)‖S‖, n ∈ Z+, S ∈ S (3.2)

for some nonnegative sequence b(n). It is clear that 0 is a solution of (3.1).

Since we have used forward difference in (3.1), the existence and uniqueness

of solutions for the initial value problem of the equation is somewhat trivial.

Denote by x(n;m,φ) the solution x = x(n) of (3.1) on [m − r,∞) with initial

data xm = φ ∈ S.

The null solution 0 is called globally asymptotically stable (GAS in brief) if

(i) it is stable, i.e., for any m ∈ Z+ and ε > 0, there exists δ > 0 such that

|x(n;m,φ)| < ε for n ∈ (m,∞) and ‖φ‖ ≤ δ; and

(ii) it is globally attracting, meaning that x(n;m,φ) → 0 as n → ∞ for every

(m,φ) ∈ Z+ × S.

It is called globally exponentially asymptotically stable (GEAS in brief), if for

every m ∈ Z+, there exist positive constants M and σ with σ < 1 such that

|x(n;m,φ)| ≤M‖φ‖σn, ∀ n ∈ [m,∞), φ ∈ S.

Let

f(n,m) =
n−1∏
k=m

|1− a(k)|, g(n,m) = f(n,m+ 1)b(m), (3.3)

and set

ß = sup
n≥m≥0

f(n,m), κ = sup
n≥m≥0

(
n−1∑
k=m

g(n, k)

)
.

Theorem 3.1 Suppose

lim
n→∞

f(m+ n,m) = 0 (3.4)

uniformly with respect to m ∈ Z+. If κ < 1, then the null solution of equation

(3.1) is GAS; and if κ < 1/(1 + ß), it is GEAS.
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Proof. Let x(n) = x(n; 0, φ) and n ≥ m ≥ 0. Solving (3.1) by a standard

argument via iteration and induction, one obtains that

x(n) =
n−1∏
k=m

(1− a(k))x(m) +
n−1∑
k=m

n−1∏
j=k+1

(1− a(j))B(k, xk), n ≥ m. (3.5)

Let y(n) = |x(n)|. By (3.2) and (3.5) one easily sees that

y(n) ≤ f(n,m)‖ym‖+
n−1∑
k=m

g(n, k)‖yk‖, ∀ n ≥ m ≥ 0.

The conclusions then follow immediately from Theorem 2.3 and Remark 2.12. �

Remark 3.2 Note that we do not require that a(n)− b(n) ≥ δ > 0 for n ≥ 0 and

a(n) ≤ 1; furthermore, the sequence a(n) can change sign on Z+.

In case a(n) ≡ a and b(n) ≡ b, if a and b fulfill (1.4) which was required in

[21], one can easily verify that f satisfies (3.4) and κ < 1. Hence by Theorem

3.1 the null solution 0 of system (3.1) is GAS.

Example 3.1. Consider the difference equation:

∆+x(n) = −
(

sin
2πn

3

)
x(n) + bx(n− 1), n ∈ Z+, (3.6)

where b > 0 is constant. Now we have

f(n,m) =
n−1∏
k=m

(
1− sin

2πn

3

)
, g(n,m) = b

n−1∏
k=m+1

(
1− sin

2πn

3

)
.

According to the different values of m and n−m, one can calculate

ß = 1 +

√
3

2
, κ =

12 + 2
√

3

3
b.

Therefore if b < 3/(12 + 2
√

3) ≈ 0.193997, then the null solution of (3.6) is GAS.

If we further assume that b < 3/(27 + 4
√

3) ≈ 0.067688, then it is GEAS.

Now let us do some numerical simulations via Matlab to illustrate the the-

oretical result. For simplicity, we set x(−1) = x(0) = 1. Taking b = 0.19 and

b = 0.0676, our PC gives the following diagrams:
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Figure 3.1: b = 0.19
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Figure 3.2: b = 0.0676

As a simple application of Theorem 2.11, we can also give an estimate for the

growth rate of solutions of equation (3.1).

Theorem 3.3 Let f , g be given as in (3.3). Suppose there is α > 0 such that

sup
n≥m≥0

(
f(n,m)αn−m

)
<∞, κ̂ := sup

n≥m≥0

(
n−1∑
k=m

(
g(n, k)αn−k

))
<∞. (3.7)

Then there exist M > 0 and β0 ∈ (0, 1) such that

‖xn‖ ≤M‖x0‖β−n0 , n ∈ Z+

for all solutions of (3.1).

Proof. We observe that for 0 < β < α, one has

fβ(m+ k,m) := f(m+ k,m)βk ≤
(
β

α

)k (
f(m+ k,m)αk

)
, (3.8)

and

κβ := sup
n≥m≥0

(
n−1∑
k=m

g(n, k)βn−k

)
= sup

n≥m≥0

(
n−1∑
k=m

g(n, k)αn−k
(
β

α

)n−k)

≤ β

α
sup

n≥m≥0

(
n−1∑
k=m

g(n, k)αn−k

)
=
β

α
κ̂.

(3.9)
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By (3.3), (3.5) and (3.7)-(3.9) we see that if β ∈ (0, α) is chosen so that β
α
κ̂ < 1

(such a β is always available), then fβ(m+ k,m)→ 0 as k →∞ uniformly with

respect to m ≥ 0, and κβ < 1.

Thanks to Theorem 2.11 and Remark 2.12, one immediately concludes the

validity of the result. �

4 Dissipativity of Delay Difference Equations

with Superlinear Nonlinearities

In this section we pay some attention to the dissipativity of the delay difference

equation

∆−y(n) = f(n, y(n)) + g(n, y(n− r(n))), y(n) ∈ Rd, n ∈ Z (4.1)

with superlinear nonlinearities f and g, where

∆−y(n) = y(n)− y(n− 1),

f and g are mappings from Z×Rd to Rd, and r(n) (n ∈ Z) are delays, 0 ≤ r(n) ≤ r

for some r ≥ 0. Specifically we show that the equation has a global pullback

attractor under appropriate dissipative-type structure conditions.

4.1 Decay estimates

We will always assume that f and g satisfy the following conditions:

〈f(n, y), y〉 ≤ −α|y|p+1 + α1, y ∈ Rd, n ∈ Z, (4.2)

|g(n, y)| ≤ β|y|q + β1, y ∈ Rd, n ∈ Z, (4.3)

where α, α1, β, β1, p and q are positive constants.

Denote by y(n;m,φ) the solution of (4.1) with initial value:

ym = φ ∈ S := S
(
[−r, 0];Rd

)
.

Theorem 4.1 Suppose that p > q ≥ 1. Then there exist positive constants M ,

σ with σ < 1 and ρ such that

|y(n;m,φ)| ≤ K‖φ‖σn−m + ρ, ∀ (m,φ) ∈ Z× S, n ≥ m.
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Proof. Let y = y(n) := y(n;m,φ), and set γ = p(q − 1)/(p− q) + 1. Taking the

inner product of (4.1) with |y(n)|γ−1y(n), we find that

|y(n)|γ+1 =
〈
y(n− 1) + f(n, y(n)) + g(n, y(n− r(n))), |y(n)|γ−1y(n)

〉
≤ −α|y(n)|γ+p + α1|y(n)|γ−1 + |y(n)|γ|y(n− 1)|

+ β|y(n)|γ‖yn‖q + β1|y(n)|γ. (4.4)

Using the Young’s inequality one deduces that

|y(n)|γ‖yn‖q ≤ ε‖yn‖γ+1 + Cε|y(n)|γ(γ+1)/(γ+1−q) (4.5)

for any ε > 0. Here (and below) Cε denotes a general constant depending upon

ε. We infer from the choice of γ that

γ(γ + 1)/(γ + 1− q) < γ + p.

Therefore by (4.5) one has

|y(n)|γ‖yn‖q ≤ ε‖yn‖γ+1 + ε|y(n)|γ+p + Cε.

A similar argument applies to show that

|y(n)|γ−1, |y(n)|γ ≤ ε|y(n)|γ+1 + Cε,

and

|y(n)|γ|y(n− 1)| ≤ γ

γ + 1
|y(n)|γ+1 +

1

γ + 1
|y(n− 1)|γ+1.

Combining the above estimates with (4.4) it yields

|y(n)|γ+1 ≤ −(α− εβ)|y(n)|γ+p + εβ‖yn‖γ+1 +

(
εβ1 +

γ

γ + 1

)
|y(n)|γ+1

+
1

γ + 1
|y(n− 1)|γ+1 + Cε. (4.6)

Since p > 1, using the classical Young’s inequality once again we obtain that(
εβ1 +

γ

γ + 1

)
|y(n)|γ+1 ≤ ε|y(n)|γ+p + Cε.

Substituting the above estimate into (4.6) it yields

|y(n)|γ+1 ≤ −(α− εβ − ε)|y(n)|γ+p + εβ‖yn‖γ+1

+ 1
γ+1
|y(n− 1)|γ+1 + Cε.

(4.7)

18



In what follows we always assume that ε is chosen sufficiently small so that

α− εβ − ε > 0. By (4.7) we have

|y(n)|γ+1 ≤ θ|y(n− 1)|γ+1 + εβ‖yn‖γ+1 + Cε,

where θ = 1/(1 + γ). Therefore, by a standard argument via iteration and

induction, we deduce that

|y(n)|γ+1 ≤ θn−l|y(l)|γ+1 +
n∑

k=l+1

θn−k
(
εβ‖yk‖γ+1 + Cε

)
≤ θn−l‖yl‖γ+1 + εβ

n∑
k=l+1

θn−k‖yk‖γ+1 + C
′

ε, ∀n ≥ l ≥ m.

That is,

|y(n)|γ+1 ≤ θn−l‖yl‖γ+1 + εβ
n∑
k=l

θn−k‖yk‖γ+1 + C
′

ε, ∀n ≥ l ≥ m.

We observe that ß := supn≥m≥0 θ
n−m = 1, and

κ := εβ sup
n≥m≥0

n∑
k=m

θn−k =
εβ(1 + γ)

γ
.

Now we fix an ε > 0 with

κ =
εβ(1 + γ)

γ
< 1/(1 + ß) = 1/2.

Then the conclusion in Theorem 4.1 directly follows from Theorem 2.3. �

4.2 Existence of solutions

In general the initial value problem of an implicit difference equation may

not be well-posed. This can be seen from the following easy examples of scalar

equations

y(n+ 1) =
1

2
y(n) + y(n+ 1)2, n ∈ Z+ (4.8)

and

y(n+ 1) = any(n) + y(n+ 1)3, n ∈ Z+, (4.9)

where an ∈ R1. One trivially checks that if y(0) > 1/2, then the first equation

(4.8) has no (real) solution. The solution of the second equation (4.9) always

exists for any initial value y(0) ∈ R1, whereas the uniqueness may fail to be true.

In what follows we show that the dissipativity condition ensures the existence

of solutions for the initial value problem of equation (4.1).
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Theorem 4.2 Suppose the hypotheses in (4.2)-(4.3) are fulfilled. If p > q ≥ 1,

then for any m ∈ Z and φ ∈ S, equation (4.1) has at least one solution y =

y(n;m,φ) on [m− r,∞).

Proof. We rewritten equation (4.1) as

y(n) = f(n, y(n)) + g(n, y(n− r(n))) + y(n− 1). (4.10)

Let m ∈ Z, and φ ∈ S. To prove that equation (4.1) has at least a solution

y = y(n;m,φ) on [m − r,∞), by (4.10) it can be easily seen that we only need

to show that for each fixed n ≥ m and u, v ∈ Rd, the solutions of the following

two algebraic equations in Rd exist:

x = f(n, x) + g(n, x) + v, x = f(n, x) + g(n, u) + v. (4.11)

We only consider the first equation in (4.11). (The argument for the second

one is similar and is thus omitted.) By virtue of the classical Schauder’s fixed-

point theorem (see [12, Corollary 8.1]), the existence of solutions of the equation

is guaranteed as long as one can give a uniform estimates for solutions of the

parameterized equation:

x = η(f(n, x) + g(n, x)) + v, η ∈ [0, 1]. (4.12)

So let x ∈ Rd be a solution of (4.12). Taking the inner product of both sides

of the equation with x, we deduce by (4.2) and (4.3) that

|x|2 = 〈η(f(n, x) + g(n, x)), x〉+ 〈v, x〉

≤ −α|x|p+1 + β|x|q+1 + (β1 + |v|)|x|+ α1.

Since p > q, one trivially deduce that −α|x|p+1 +β|x|q+1 has an upper bound M .

Therefore we have

|x|2 ≤ (β1 + |v|)|x|+ α1 +M ≤ 1
2
|x|2 + 1

2
(β1 + |v|)2 + α1 +M.

Hence

|x|2 ≤ (β1 + |v|)2 + 2(α1 +M).

This is precisely what we desired. �

Given m ∈ Z and φ ∈ S, denote by S (m,φ) the solution set of (4.1) on

[m− r,∞) with initial value φ.

20



Proposition 4.3 Let φk ∈ S (k = 1, 2, · · · ), and m ∈ Z. Suppose that φk → φ0

as k → ∞. Let yk ∈ S (m,φk). Then there is a subsequence of yk, still denoted

by yk, such that yk converges to some y0 ∈ S (m,φ0), meaning that for any

n ∈ [m− r, ∞),

yk(n)→ y0(n) as k →∞.

Proof. The proof for such results are quite standard for evolution equations by

using appropriate uniform estimates for solutions as given in Theorem 4.1. We

omit the details. �

4.3 Global pullback attractor

Define a discrete set-valued process R on S as below:

R(n,m)φ = {yn : y ∈ S (m,φ)}, n ≥ m > −∞, φ ∈ S.

In view of Theorem 4.1 and Proposition 4.3, one can easily check that for each

fixed n,m and φ ∈ S, R(n,m)φ is a bounded closed subset of S; furthermore,

R(n,m)φ is upper semicontinuous in φ. R possesses the following basic proper-

ties:

• R(m,m)φ = {φ} for all m ∈ Z and φ ∈ S;

• R(n,m)φ = R(n, k)R(k,m)φ for all n ≥ k ≥ m and φ ∈ S.

These fundamental properties along with Theorem 4.1 allow us to apply the

standard theory on pullback attractors (see e.g. [15, 7] and [16, Chapter 9]) to

system R to obtain the following existence result of a global pullback attractor:

Theorem 4.4 Suppose f and g satisfy (4.2) and (4.3), respectively. If p > q ≥ 1,

then R has a pullback attractor in S. More precisely, there exists a unique family

A = {A(n)}n∈Z of compact sets with

A(n) ⊂ Bρ := {φ ∈ S : ‖φ‖ < ρ}

for all n ∈ Z such that

(1) R(n,m)A(m) = A(n) for n ≥ m;

(2) for any bounded set B ⊂ S and n ∈ Z,

lim
m→−∞

dH(R(n,m)B,A(n)) = 0,
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where dH(·, ·) denotes the Hausdorff semi-distance in S,

dH(B,A) = sup
φ∈B

inf{‖φ− ψ‖ : ψ ∈ A}, ∀B, A ⊂ S.

Remark 4.5 We have only given some examples to illustrate the applications of

the particular case of inequality (2.1), namely, inequality (2.6). Inequalities like

the general form of (2.1) usually play important roles in studying the dynamical

behavior of evolutions equations in case the linear parts of the equations are hy-

perbolic. In a forthcoming paper will report some results in this line, in which the

invariant manifolds of equation

y(n+ 1) = Anyn + f(n, yn+δn) (4.13)

in a Banach space X are carefully investigated, where δn is an arbitrarily given

sequence taking values in {0, 1}. In case δn = 0 with 0 being a solution of the

equation, the invariant manifolds of the 0 solution of the equation was considered

in a recent paper [2] by Barreira et al. Closely related works can be also found

in [3] and [23], etc. We are interested in a more general case where we neither

assume that the equation has a known trivial solution nor δn ≡ 0. Note that if

δn = 1 then the equation is an implicit one. As we have seen in Section 4.2, for

such an equation even if the existence of solutions can fail to be true.
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