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ABSTRACT
A Riemann − Liouville fractional Robin boundary-value problem is proposed to
describe the fast heat transfer law both within isotropic materials and through the
boundary of the materials in high temperature environment. The variational for-
mulation of the fractional model is given, and further the energy estimation of the
weak solution is deduced. The uniqueness theorem of weak solution is proved. A
valid finite difference scheme is developed for the fractional model and numerical
experiment is implemented. Numerical results indicate that the fractional model is
applicable to discover the thermal superdiffusion in the thermal protective cloth-
ing(TPC) system and numerical algorithms are effective to improve the intelligence
of TPC design.
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1. Introduction

In recent years, anomalous diffusion which deviates the classical Fickian diffusion
has gained wide attention due mainly to its successful applications in science and
engineering[1–3]. Anomalous diffusion refers to a class of non-equilibrium processes
that can not be described by standard states in statistical physics. Microscopically,
due to the complexity of the transmission medium, the random motion of particles is
limited by the structure of irregular media, and its motion can not be described by the
standard statistical method of particle motion in a uniform medium. In the view of
macroscale explanation, the statistical laws of the movement of a large number of par-
ticles do not meet the standard statistical distribution, and the central limit theorem
is no longer applicable.

Therefore, the relationship between the mean squared displacement and the time

∗Corresponding author. Email: dhxu6708@mail.shufe.edu.cn;dhxu6708@zstu.edu.cn



of the diffusion process under the point source conditions is described as follows:〈
X2(t)

〉
∼ καtα, α > 0. (1)

It is called a normal diffusion process when α = 1.0; it is called an anomalous diffusion
process when α 6= 1.0. In detail, it is called subdiffusion or dispersive when α < 1.0,
it is called superdiffusion when α > 1.0.

Practically, a diffusion process that does not conform to Fick’s second diffusion
law can be called anomalous diffusion[4]. Moreover the inverse problems for abnormal
diffusion in sciences and engineering have attracted much more attention, we can refer
to [5] for example for further detailed description.

The purpose of this paper is concerned with a kind of superdiffusion in the field
of functional clothing design, such as thermal protective clothing(TPC) based on the
heat transfer law. The study of heat transfer in porous media has a long history. A
considerable number of fractional models have been proposed, including time fractional
and spatial fractional equations. The boundary conditions are attributed to Dirichlet,
Neumann or Robin boundary-value of the fractional form. Recently, research on the
heat transfer within fabric materials for the TPC has gained more and more attension.

As a non-typical porous medium, the TPC is a kind of multi-layer structure prod-
ucts, coupled with its special working environment such as high temperature and high
humidity situation, where the heat and humidity transfer process inside the TPC sys-
tem is more complicated[6]. The classical Fourier’s law of heat conduction or Fick’s
law of diffusion is no longer suitable for this situation. Inspired by the model proposed
by J.T Fan et al and ourselves [7–16] and the faster transmission of superdiffusion
[1,17], we proposed in this paper a class of spatial fractional heat transfer model to
describe the faster transmission process instead of the classical Fourier’s law.

Recalling the pioneer work for this topic, Ervin and Roop[18] proved coercivity of a
Galerkin formulation and the well-posedness of the homogeneous Dirichlet boundary-
value problem of a constant-coefficient conservative fractional differential equations
(FDEs). Wang and Yang [19] proposed a Petrov-Galerkin formulation for the homoge-
neous Dirichlet boundary-value problem of variable-coefficient FDEs, and proved its
coercivity and well-posedness. Most importantly, Wang and Yang [20] also proved that
five out of the nine combinations of the three different forms of FDEs that are closed
by three types of Neumann boundary conditions are well-posed and the remaining
four kind of problems do not admit a solution.

Till now, the Robin boundary-value problems of FDEs are much more challenging
than the Dirichlet or Neumann boundary-value problems.

This paper is organized as follows. In Section 1, the significance of anomalous dif-
fusion and fractional model are introduced. In Section 2, a spatial fractional mod-
el with a fractional Robin boundary condition is proposed for the TPC system
under high temperature situations. In Section 3, a related basic properties of the
Riemann − Liouville fractional derivative and some useful definitions are presented,
demonstrating the energy estimation and uniqueness of the weak solution. In Section 4,
the shifted Grünwald formula is adopted to approximate the Riemann−Liouville
derivative, and a so called implicit-explicit (IMEX) method is proposed. Conver-
gence rate of the numerical algorithm for the Robin problem with exact/noisy initial-
boundary value conditions is derived. In Section 5, numerical simulation results show
that the fractional model is appropriate to simulate the situation we considered. In
the final section, some conclusions and prospects are given.
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Figure 1. Schematic diagram of the body-clothing-environment system (TPC system).

2. A fractional model with a R − L fractional Robin boundary condition

We summarily adopt some assumptions for the dynamic heat transfer process in the
body-clothing-environment system[11,15], see Figure 1:

• Thermal protective clothing can be treated as a porous medium and fibrous
battings are isotropic in fiber arrangement and material properties.
• The effective thermal conductivity of the fabric is constant under the condition

that the external environment have a small change.
• Volume changes of the fibers due to the variation of moisture and water content

are neglected and effective tortuosity is a constant.
• Heat conduction within the porous batting is non−Fourier and can be described

by the superdiffusion model.

In this paper we denote L = 1, Ω = (0, 1)× (0, tf ), I = (0, 1),Λ = (0, tf ), and adopt
the following definition of Riemann− Liouville fractional integrals and derivatives.

Definition 2.1. (Left and right R− L fractional integrals)[21,22] For µ > 0, the left
and right fractional integrals are defined by

Iµ0+f(x) :=
1

Γ(µ)

x∫
0

f(s)

(x− s)1−µ ds, Iµ1−f(x) :=
1

Γ(µ)

1∫
x

f(s)

(s− x)1−µ ds, (2)

where Γ(·) is the Gamma function, x ∈ Ī.

Definition 2.2. (Left and right R−L fractional derivatives)[21,22]For µ ≥ 0, the left
and right fractional derivatives at x ∈ I are defined by

Dµ
0+f(x) := DnIn−µ0+ f(x), Dµ

1−f(x) := (−D)nIn−µ1− f(x), (n = [µ] + 1). (3)

According to the CTRW (continuous time random walk) scheme, the superdiffu-
sion equation is formulated as follows:

∂W

∂t
= Kµ

−∞D
µ
xW (x, t), (1 < µ < 2), (4)
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where W (x, t) is the pdf of being at a certain position x at time t (called the propaga-
tor) and −∞D

µ
x is Weyl operator in one-dimension is equivalent to a Riesz operator

∇µ[23].
Unlike the above formula, the Weyl operator −∞D

µ
x is replaced by utilizing the

Riemann − Liouville fractional derivative operator Dµ
0+, 1 < µ < 2 in the following

equations because we only consider the diffusion process in a finite domain.
Based on physical and mathematical considerations, a heat transfer model with

spatial fraction is proposed to describe the faster heat transfer process in high heat
environment. The physical phenomenon is usually called superdiffusion in the sense of
CTRW theory[1,23]. In this case the heat flux is described as the following diffusion
law:

q(x, t) = κDµ−1
0+ T (x, t)

or

q(x, t) = κDµ−1
1− T (x, t) ,

where 1 < µ < 2.
Let µ = 2−γ, γ ∈ (0, 1). So the derivation of the following space-fractional governed

equation can be implemented by the same way as the classic case of heat transfer. The
core process of the derivation is the element analysis method applied in arbitrary
element [x1, x2] ⊂ I during arbitrary time interval [t1, t2] ⊂ Λ of one-dimensional
setting:∫ t2

t1

(κγD
1−γ
0+ T (x2, t)− κγD1−γ

0+ T (x1, t))dt =

∫ x2

x1

Cv(T (x, t2)− T (x, t1))dx,

that is, ∫ t2

t1

∫ x2

x1

κγD
2−γ
0+ T (x, t))dxdt =

∫ t2

t1

∫ x2

x1

Cv
∂T

∂t
dxdt.

Moreover the fractional Robin boundary conditions can be derived by the above men-
tioned heat flux formulaition with respect to superdiffusion:

lim
x→0+

kair
d

dx

1

Γ(γ)

x∫
0

T (s, t)

(x− s)1−γ ds = hair (T |x=0 −Tair) ,

lim
x→1−

ke
d

dx

1

Γ(γ)

1∫
x

T (s, t)

(s− x)1−γ ds = he (Te − T |x=1) .

4



Henthforth the the thermal superdiffusion will show that the temperature T (x, t)
in the TPC system satisfy the following initial/boundary value problem

CvTt (x, t) = kγD
2−γ
0+ T (x, t) , (x, t) ∈ Ω,

T (x, 0) = TI(x), x ∈ Ī ,
kairD

1−γ
0+ T (x, t) |x=0= hair (T |x=0 −Tair) , t ∈ Λ̄,

keD
1−γ
1− T (x, t) |x=1= he (Te − T |x=1) , t ∈ Λ̄,

(5)

where D2−γ
0+ T , D1−γ

0+ T and D1−γ
1− T are left and right Riemann − Liouville fractional

derivatives respectively; γ ∈ (0, 1); Cv is effective volumetric heat capacity of the
fibrous batting; kγ , kair, ke are the thermal conductivity of textiles, air gap layer and
outside environment respectively; he, hair are the heat exchange coefficient between
the body and the TPC, and between the TPC and outside environent respectively,
which are approximately regarded as constants; Tair, Te are the temperature in the
air gap layer between body skin and the TPC, the outside environmental temperature
respectively.

Let c2 = kγ
Cv
, α = hair

kair
, β = he

ke
. (5) can be simplified as follows:

Tt(x, t) = c2D2−γ
0+ T (x, t), (x, t) ∈ Ω,

T (x, 0) = TI(x), x ∈ Ī ,
D1−γ

0+ T |x=0 −αT |x=0= −αTair, t ∈ Λ̄,

D1−γ
1− T |x=1 +βT |x=1= βTe, t ∈ Λ̄.

(6)

The initial-boundary value problem for the space-fractional partial differential equa-
tion has been well defined according to the above process of methematical modeling.
Next we will discuss its weak solution in mathematical way.

3. Variational formulation of the fractional model and uniqueness of the
weak solution

3.1. Preparatory knowledge[20]

Let 0 < µ < 1. Firstly we introduce a function κ(µ)

κ ≡ κ(µ) :=

{
2, 0 < µ < 1/2,

(1− ε(µ))/µ, 1/2 ≤ µ < 1,
(7)

where ε(µ) < 1 is a very small positive number. Evidently κ < 2 for any µ ∈ [1/2, 1).

Definition 3.1. (Left and right R− L fractional derivatives spaces[20])

Denote left and right Riemann− Liouville fractional derivatives spaces by

Hµ
l (0, 1) :=

{
v ∈ Lκ(0, 1) : Dµ

0+v ∈ L
2(0, 1)

}
, 0 < µ < 1, (8)

Hµ
r (0, 1) :=

{
v ∈ Lκ(0, 1) : Dµ

1−v ∈ L
2(0, 1)

}
, 0 < µ < 1, (9)
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respectively, which are equipped with the (semi) norm and seminorm respectively

|v|Hµ
l (0,1) :=

∥∥Dµ
0+v
∥∥
L2(0,1)

, ‖v‖Hµ
l (0,1) :=

{
‖v‖2Lκ(0,1) + |v|2Hµ

l (0,1)

} 1

2

, (10)

|v|Hµ
r (0,1) :=

∥∥Dµ
1−v
∥∥
L2(0,1)

, ‖v‖Hµ
r (0,1) :=

{
‖v‖2Lκ(0,1) + |v|2Hµ

r (0,1)

} 1

2

. (11)

These nonconventional fractional derivative spaces is defined to ensure well-
posedness and regularity property of the true solution and weak solution of the IBVP
(6), and also the convergence rate of its numerical solution.

We also define subspaces Hµ,0
l (0, 1) ⊂ Hµ

l (0, 1) and Hµ,0
r (0, 1) ⊂ Hµ

r (0, 1)

Hµ,0
l (0, 1) :=

{
v ∈ Hµ

l (0, 1) :

∫ 1

0
I1−µ

0+ v(x) dx = 0

}
, 0 < µ < 1, (12)

Hµ,0
r (0, 1) :=

{
v ∈ Hµ

r (0, 1) :

∫ 1

0
I1−µ

1− v(x) dx = 0

}
, 0 < µ < 1, (13)

or

Hµ,0
l (0, 1) :=

{
v −

∫ 1
0 I

1−µ
0+ v(x)dx

Γ(µ)
xµ−1|∀v ∈ Hµ

l (0, 1)

}
, 0 < µ < 1, (14)

Hµ,0
r (0, 1) :=

{
v −

∫ 1
0 I

1−µ
1− v(x)dx

Γ(µ)
(1− x)µ−1|∀v ∈ Hµ

r (0, 1)

}
, 0 < µ < 1. (15)

Remark 1. The subspaces Hµ,0
l (0, 1) and Hµ,0

r (0, 1) mean the subsets of the spaces
Hµ
l (0, 1), Hµ

r (0, 1) with homogeneous boundaries respectively. For example, we see that

xµ−1 ∈ Hµ
l (0, 1), and v(x) = xµ−1 − Γ(µ) ∈ Hµ,0

l (0, 1).

Due to the Riemann-Liouville fractional Friediches inequality, for example Corol-
lary 3.2 in [20], corresponding norms are defined for the subspaces Hµ,0

l (0, 1) ⊂
Hµ
l (0, 1), Hµ,0

r (0, 1) ⊂ Hµ
r (0, 1) respectively

‖v‖Hµ,0
l (0,1) := |v|Hµ

l (0,1) , ‖v‖Hµ,0
r (0,1) := |v|Hµ

r (0,1) . (16)

Remark 2. (Adjoint property of fractional integral operators) The left and right R-L
fractional integral operators are adjoints in the L2 sense, i.e., for all µ > 0,

(Iµ0+w, v)L2(0,1) = (w, Iµ1−v)L2(0,1), ∀w, v ∈ L2(0, 1). (17)

The detailed analysis of the above-mentioned fractional spaces can be found in [20].
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3.2. Variational formulation and definition of weak solution

To derive the variational formulation by the similar way as the classical case, homog-
enizing the boundary value conditions yields

ut = c2D2−γ
0+ u+ Θ(x, t), (x, t) ∈ Ω,

u(x, 0) = u0(x), x ∈ Ī ,
D1−γ

0+ u |x=0 −αu |x=0= 0, t ∈ Λ̄,

D1−γ
1− u |x=1 +βu |x=1= 0, t ∈ Λ̄.

(18)

Here

u(x, t) = T (x, t)− h(x, t), (19)

Θ(x, t) =
c2A(t)

Γ(γ)
xγ−1 +

c2B(t)

Γ(γ − 1)
xγ−2 −A′(t)x−B′(t), (20)

u0(x) = TI(x)− h(x, 0), (21)

h(x, t) = A(t)x+B(t). (22)

A(t) =
−(β + 1

Γ(γ))Tair(t) + βTe(t)

1
Γ(1−γ) + β

, (23)

B(t) = Tair(t). (24)

If u(x, t) ∈ L2(Λ;H2−γ,0(I)) ⊂ L2(Λ;H1−γ,0(I)) satisfies the governed equation and
prescribed initial/boundary conditions in (18), then u(x, t) is called a classic solution
of (18).

Multiplying the equation in (18) by Iγ0+v and integration on Ω̄ yields

(ut, I
γ
0+v) = c2(D2−γ

0+ u , Iγ0+v) + (Θ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0(I)). (25)

By the partial integral formula, we have

(D2−γ
0+ u , Iγ0+v) = −

(
D1−γ

0+ u, D1−γ
0+ v

)
+

tf∫
0

αu|x=0 I
γ
0+v|x=0 dt+

tf∫
0

βu|x=1 I
γ
0+v|x=1 dt

= −
(
D1−γ

0+ u, D1−γ
0+ v

)
.

(26)
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So the variational formulation of (18) is concluded as follows: find u ∈ L2(Λ;H1−γ,0(I))
such that

(ut, I
γ
0+v) = −c2(D1−γ

0+ u, D1−γ
0+ v) + (Θ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0

l (I)). (27)

We observe that the inner product (Θ(x, t), Iγ0+v) does not make sense due to the
less regularity of the nonlinear source term Θ(x, t) at the point x = 0. Therefore we
turn to make reformulation of the weak solution since it is not necessary to assume
that the selection of the test function can offset the singularity. One can check that
x2−γu ∈ L2(Λ;H1−γ,0

l (I)) when u ∈ L2(Λ;H1−γ,0
l (I)).

Motivating by above observation, we thus deduce the following reformulation of
weak solution in variational formulation.

Definition 3.2. (Weak solution) We call u(x, t) a weak solution of (18) if there exist

ũ = x2−γu ∈ L2(Λ;H1−γ,0
l (I)) such that{

(ũt, I
γ
0+v) = −c2(D1−γ

0+ ũ, D1−γ
0+ v) + (x2−γΘ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0

l (I)),

ũ(x, 0) = ũ0(x)

(28)
where ũ0(x) = x2−γu0(x).

The detailed analysi of reformulation of the weak solution can be found in [15].

3.3. Energy estimation of weak solutions

According to (28), we have

(ũt, I
γ
0+v) + c2(D1−γ

0+ ũ, D1−γ
0+ v) = (x2−γΘ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0

l (I)). (29)

Let v = ũ, we have

(ũt, I
γ
0+ũ)L2(0,1) =

1

2
· d
dt

∥∥Iγ0+(ũ2)
∥∥
L1(0,1)

, (30)

c2(D1−γ
0+ ũ, D1−γ

0+ ũ)L2(0,1) = c2
∥∥∥D1−γ

0+ ũ
∥∥∥2

L2(0,1)
= c2 ‖ũ‖2H1−γ,0

l (0,1) , (31)

∣∣(x2−γΘ(x, t), Iγ0+ũ)
∣∣
L2(0,1)

≤
∥∥x2−γΘ(x, t)

∥∥
L2(0,1)

∥∥Iγ0+ũ
∥∥
L2(0,1)

≤ 1

2

∥∥x2−γΘ(x, t)
∥∥2

L2(0,1)
+

1

2

∥∥Iγ0+.ũ
∥∥2

L2(0,1)
.

(32)
Then one can easily obtain that

d

dt

∥∥Iγ0+(ũ2)
∥∥
L1(0,1)

+ 2c2 ‖ũ‖2H1−γ,0
l (0,1) ≤

∥∥x2−γΘ(x, t)
∥∥2

L2(0,1)
+
∥∥Iγ0+ũ

∥∥2

L2(0,1)
. (33)
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Integrating by parts form 0 to tf , one can obtain

∥∥Iγ0+(ũ(·, tf )2)
∥∥
L1(0,1)

+ 2c2

∫ tf

0
‖ũ‖2H1−γ,0

l (0,1) dt

≤
∥∥Iγ0+(ũ2

0)
∥∥
L1(0,1)

+

∫ tf

0

∥∥x2−γΘ(x, t)
∥∥2

L2(0,1)
dt+

∫ tf

0

∥∥Iγ0+ũ
∥∥2

L2(0,1)
dt.

(34)

Since there is a positive constant C independent of u ∈ H1−γ
l (0, 1), we have

||Iγ0+u||L2(0,1) ≤ C||u||H1−γ
l (0,1)[20]. Therefore, the above formula can be simplified

as

∥∥Iγ0+(ũ(·, tf )2)
∥∥
L1(0,1)

+ C

∫ tf

0
‖ũ‖2H1−γ,0

l (0,1) dt

≤
∥∥Iγ0+(ũ2

0)
∥∥
L1(0,1)

+

∫ tf

0

∥∥x2−γΘ(x, t)
∥∥2

L2(0,1)
dt.

(35)

So we can get the following theorem:

Theorem 3.3. (Energy estimation of weak solution) For any γ ∈ (0, 1), if u(x, t) is
a weak solution to the problem (18), then we can get the following energy estimate

∥∥Iγ0+(x4−2γu2(x, tf ))
∥∥
L1(0,1)

+ C

∫ tf

0

∥∥x2−γu(x, t)
∥∥2

H1−γ,0
l (0,1)

dt

≤
∥∥Iγ0+(x4−2γu2

0(x))
∥∥
L1(0,1)

+

∫ tf

0

∥∥x2−γΘ(x, t)
∥∥2

L2(0,1)
dt.

(36)

3.4. Uniqueness of the weak solution

According to the energy estimate of the weak solution in Theorem 3.3, we can derive
the uniqueness of the weak solution of the problem (18).

Lemma 3.4. (Uniqueness of the weak solution) For any γ ∈ (0, 1), if u1, u2 are two

weak solutions to the problem(18), then u1 = u2 in L2(Λ;H1−γ,0
l (I)).

Proof. If u1, u2 are two weak solutionsto the problem (18), then we have ũ1 =
x2−γu1, ũ2 = x2−γu2 respectively satisfying{

((ũ1)t, I
γ
0+v) = −c2(D1−γ

0+ ũ1, D
1−γ
0+ v) + (x2−γΘ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0

l (I)),

ũ1(x, 0) = ũ0(x).

(37){
((ũ2)t, I

γ
0+v) = −c2(D1−γ

0+ ũ2, D
1−γ
0+ v) + (x2−γΘ(x, t), Iγ0+v), ∀v ∈ L2(Λ;H1−γ,0

l (I)),

ũ2(x, 0) = ũ0(x).

(38)
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Let u = u1 − u2, ũ = ũ1 − ũ2, then ũ satisfied{
(ũt, I

γ
0+v) = −c2(D1−γ

0+ ũ, D1−γ
0+ v), ∀v ∈ L2(Λ;H1−γ,0

l (I)),

ũ(x, 0) = 0.
(39)

According to the variational formulation and the definition of the weak solution, u
that (39) satisfies ũ = x2−γu is a weak solution of (40).

ut = c2D2−γ
0+ u, (x, t) ∈ Ω,

u(x, 0) = 0, x ∈ Ī ,
D1−γ

0+ u |x=0 −αu |x=0= 0, t ∈ Λ̄,

D1−γ
1− u |x=1 +βu |x=1= 0, t ∈ Λ̄.

(40)

From Theorem 3.3, we therefore derive

∥∥Iγ0+(x4−2γu2(x, tf ))
∥∥
L1(0,1)

+ C

∫ tf

0
‖ũ‖2H1−γ,0

l (0,1) dt ≤ 0. (41)

Which implies that ũ = 0, i.e., u1 = u2 in L2(Λ;H1−γ,0
l (I \ E0)), where E0 is set of

measure zero.

From Lemma 3.4 and the relationship T = u+h, we conclude the following theorem.

Theorem 3.5. For any γ ∈ (0, 1), if u(x, t) is a weak solution to the problem (18),

then the weak solution T = u + h ∈ L2(Λ;H1−γ,0
l (I \ (0, ε))) of the problem (6) is

unique.

4. Numerical algorithm

4.1. Equation discretization

We adopt the shifted Grünwald formula at all time levels for approximating the
fractional derivative[24,25]

D2−γ
0+ T (xi, tn+1) =

1

h2−γ

i+1∑
j=0

gjT (xi − (j − 1)h, tn+1) +O(h). (42)

Here the normalized Grünwald weights are defined by

g0 = 1, gj = (−1)j
(2− γ)(1− γ) · · · (3− γ − j)

j!
, j = 1, 2, 3, · · · . (43)
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Particularly, g0 = 1, g1 = −(2− γ), g2 = (2−γ)(1−γ)
2 . Thus we have

Cv
Tn+1
i − Tni

τ
=

kγ
h2−γ

i+1∑
j=0

gjT (xi − (j − 1)h, tn+1)

=
kγ
h2−γ

i+1∑
j=0

gjT
n+1
i+1−j , i = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1.

(44)

Let s = krτ
h2−γCv

, we have
(1− sg1)Tn+1

1 − sg2T
n+1
2 = Tn1 + sg2T

n+1
0 ,

− sgiTn+1
1 − sgi−1T

n+1
2 − · · · − sg2T

n+1
i−1 + (1− sg1)Tn+1

i − sg0T
n+1
i+1

= Tni + sgi+1T
n+1
0 , i = 2, 3, · · · ,M − 1, n = 0, 1, · · · , N − 1.

(45)

4.2. Boundary discretization

We also adopt the shifted Grünwald formula at all time levels for approximating
the fractional derivative[24,25]

D1−γ
0+ T (xi, tn+1) =

1

h1−γ

i+1∑
k=0

ωkT (xi − (k − 1)h, tn+1) +O(h). (46)

D1−γ
1− T (xi, tn+1) =

1

h1−γ

M−i+1∑
k=0

ωkT (xi + (k − 1)h, tn+1) +O(h), (47)

where

ω0 = 1, ωk = (−1)k
(1− γ)(−γ) · · · (2− γ − k)

k!
, k = 1, 2, 3, · · · .

Hence when x = 0, we have

kair
h1−γ

1∑
k=0

ωkT
n+1
0 =

kair
h1−γ

(
ω0T

n+1
1 + ω1T

n+1
0

)
= hair(T

n+1
0 −Tn+1

air ), n = 0, 1, · · · , N−1.

(48)
When x = 1, we have

ke
h1−γ

1∑
k=0

ωkT
n+1
M =

ke
h1−γ

(
ω0T

n+1
M−1 + ω1T

n+1
M

)
= he(T

n+1
e −Tn+1

M ), n = 0, 1, · · · , N−1.

(49)
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4.3. Discretization scheme and convergence analysis

The above equations are expressed in the matrix form

1− sg2
ασh1−γ − sg1 −sg0

−
( sg3
ασh1−γ + sg2

)
1− sg1 −sg0

−
( sg4
ασh1−γ + sg4

)
−sg2 1− sg1 −sg0

...
...

. . .
. . .

. . .

−
( sgM−1

ασh1−γ + sgM−2

)
−sgM−3 . . . −sg2 1− sg1 −sg0

−
( sgM
ασh1−γ + sgM−1

)
−sgM−2 · · · −sg3 −sg2 1 + sg0

βηh1−γ − sg1





Tn+1
1

Tn+1
2

Tn+1
3
...

Tn+1
M−2

Tn+1
M−1



=



Tn1
Tn2
Tn3
...

TnM−2
TnM−1


+
s

σ
Tn+1
air



g2

g3

g4
...

gM−1

gM


+
s

η
Tn+1
e



0
0
0
...
0
1


, n = 0, 1, · · · , N − 1,

(50)
where

σ = 1− γ − 1

αh1−γ , η =
γ − 1

βh1−γ + 1. (51)

Remark 3. (Convergence rate of the FDM algorithm) Clearly, (50) is called an
implicit-explicit (IMEX) scheme. One can prove that the above scheme is uncondition-
ally stable and has convergence rate O(h) +O(τ), since the inverse of the coefficient
Matrix, that is, the spectral radius of the iterative matrix is less than one[23,26].

In the problem (6), the initial-boundary measurements are usually noised with a
noise level δ, henceforth, the problem (6) can be rewritten as

CvT
δ
t (x, t) = kγD

2−γ
0+ T δ (x, t) , (x, t) ∈ Ω,

T δ(x, 0) = T δI (x), x ∈ Ī ,

kairD
1−γ
0+ T δ (x, t) |x=0= hair

(
T δ |x=0 −T δair

)
, t ∈ Λ̄,

keD
1−γ
1− T δ (x, t) |x=1= he

(
T δe − T δ |x=1

)
, t ∈ Λ̄.

(52)

From Theorem 3.3 and the relationship T = h + u, we can derive the following
estimate.

Remark 4. Assume that the boundary conditions Tair(x, t), Te(x, t) and TI(x) are
noised by T δair(x, t), T

δ
e (x, t) and T δI (x) such that ||T δair(t) − Tair(t)|| ≤ δ, ||T δe (t) −

Te(t)|| ≤ δ, ||T δI (x)−TI(x)|| ≤ δ. Then the perturbed solution with noisy data T δ(x, t)
satisfies∥∥∥Iγ0+(x4−2γ(T δ − T )(·, tf ))2

∥∥∥
L1(0,1)

+ C

∫ tf

0

∥∥∥x2−γ(T δ − T )
∥∥∥2

H1−γ,0
l (0,1)

dt = O(δ2)

(53)
as δ → 0.
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(a) γ = 0.

2

(b) γ = 0.2.

(c) γ = 0.5. (d) γ = 0.7.

Figure 2. Temperature distribution within the domain [0, L]× [0, tf ].

5. Numerical simulation for the TPC system

5.1. Parameters and conditions in the body-clothing-environment system

The fractional thermal conductivity kγ of textiles will be approximated by kγ = εkair+
(1− ε)kf .

In the numerical simulation, we set thermal conductivities: kf = 0.084W · m−1 ·
K−1, kair = 0.024W ·m−1 ·K−1, ke = 0.1W ·m−1 ·K−1; thickness: L = 2.5× 10−3m,
terminal time tf ∈ [0, 10s]; left boundary value condition: Tair = 37◦C; right boundary

value condition: Te = 500◦C; initial condition: TI(x) = −Tair−Te
L2 x2 + Tair.

The physical parameters in equations are given as follows[15]: ε = 0.88, Cv =
1715.0kJ ·m−3 ·K−1, hair = 0.021W ·m−2 ·K−1, he = 40W ·m−2 ·K−1.

5.2. Numerical examples for exact measurements

In this section, we present some numerical examples where the initial-boundary mea-
surements are exact, and show the temperature distribution within the TPC system.

In the numerical experiments we show that in high temperature situation, the frac-
tional model gives more reasonable results than the classical heat transfer model.

From Figure 2, it can be seen that the fractional model of different γ ∈ (0, 1) shows
faster heat transfer than the classic case γ = 0. And for different fractional order,
the heat transfer changes with different speed. This fact also conforms to real-world
phenomena.
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Figure 3. Temperature distribution when x is fixed. Figure 4. Temperature distribution when t is fixed.

To clarify these results, we plot several curves in Figure 3 and Figure 4 with 2−γ =
1.1, 1.3, 1.5, 1.8, 1.9, 2.0 respectively. The temperature T (x, t) for a fixed x = x10(M =
100, N = 10) decreases faster and faster as γ decreases. For a fixed t = t10, the
temperature of T (x, t) has same decreasing tendency as γ decreases.

Remark 5. The result of the fractional model are coincident with the conclude of [15]
at high temperature. On the other hand, the model describes the faster propagation
as we expected, which is also applicable to the TPC design[6].

5.3. Numerical examples for noisy measurements

In this section, we present two numerical examples where the initial-boundary mea-

surements are noised, and show the error distribution Tn,δi − Tni in the case of δ is
known.

(a) γ = 0.5, δ = 0.5.

2

(b) γ = 0.5, δ = 1.5.

Figure 5. Error distribution within the domain [0, L]× [0, tf ].

In the numerical experiments we shows that in the high temperature situation, the
error level of the approximate solution is related to the data error level δ. From Figure
5, the error of the approximate solution increases with the increase of the data error

level, and we can calculate E2
N := ΣM

i=1(TN,δi − TNi )2 = 4.9572, when γ = 0.5, δ = 0.5;
E2
N = 14.8716, when γ = 0.5, δ = 1.5. All results confirm our judgement numerically.
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6. Conclusions and prospects

In this paper, a spatial fractional model involving fractional equation and fraction
Robin boundary conditions is reformulated to describe the law of superdiffusion within
the TPC system in high temperature environment. The weak solution to the definite
solution problem uniquely exists and owns weighted stability estimation. Numerical
algorithms are developed to perform the distribution of the temperature. Numerical
simulation exerimentation shows that the proposed fractional model is reasonable and
the developed algorithm is efficient.

There are some challenging problems need future discussing. The future research
topics include:

• More Applicable Models. Some other factors should be considered, for example,
the heat radiation and moisture transfer have to be included in the TPC system
because the phenomenon of coupled heat and moisture transfer in porous media
usually occurs. Moreover, the proposed model can be generalised to much more
practical case, for example in many kinds of anomalous diffusion phenomenon
in the involved domain or on the boundary.
• More Efficiency Algorithms. The finite element approximation for the variational

formulation reported in this paper also deserves further consideration. We will
develop some novel numerical algorithms, which owns faster convergence rate
and higher efficiency.
• New Inverse Problems for Fractional Models. Based on the proposed fraction-

al model, some kinds of inverse problems of parameters determination for the
TPC design will be discussed in the future, for example thickness-porosity-
conductivity determination problems are the promising topics in the functional
clothing industry[11,27]. Meanwhile the optimal choice of the fractional order
γ ∈ (0, 1) in the proposed model should be much more reasonably determined
whenever the practical measurements are obtained in different heat-moisture
transfer situation.

The related theories and methodologies for above interesting topics will be presented
in the forthcoming papers.
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