References
1. J. Janikiewicz et al. , Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis 9 , 332 (2018).
2. Y. Kim et al. , Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 31 , 275-317 (2019).
3. A. Picca et al. , Mitochondria and redox balance in coeliac disease: A case-control study. Eur J Clin Invest 48 , (2018).
4. S. Fulda, Mitochondria, redox signaling and cell death in cancer.Biol Chem 397 , 583 (2016).
5. A. Y. Seo et al. , New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci123 , 2533-2542 (2010).
6. N. Arakaki et al. , Dynamics of mitochondria during the cell cycle. Biol Pharm Bull 29 , 1962-1965 (2006).
7. T. Tatsuta, T. Langer, Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27 , 306-314 (2008).
8. S. B. Berman, P. J. Hollenbeck, Exploring the life cycle of mitochondria in neuropsychiatric diseases: mitochondrial dynamics and quality control. Neurobiol Dis 51 , 1-2 (2013).
9. A. G. Ryazanov, E. A. Shestakova, P. G. Natapov, Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation.Nature 334 , 170-173 (1988).
10. E. Davydova et al. , Identification and characterization of a novel evolutionarily conserved lysine-specific methyltransferase targeting eukaryotic translation elongation factor 2 (eEF2). J Biol Chem 289 , 30499-30510 (2014).
11. D. Susorov et al. , Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.J Biol Chem 293 , 5220-5229 (2018).
12. R. Aishwarya et al. , Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics, respiration, and autophagy in cardiomyocytes. Redox Biol 36 , 101660 (2020).
13. J. C. Whitney et al. , An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163 , 607-619 (2015).
14. C. Y. Chen et al. , Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. Cancer Sci 102 , 1582-1589 (2011).
15. A. A. Hizli et al. , Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Mol Cell Biol 33 , 596-604 (2013).
16. D. C. Chan, Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22 , 79-99 (2006).
17. A. R. Hall, N. Burke, R. K. Dongworth, D. J. Hausenloy, Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171 , 1890-1906 (2014).
18. H. Chen, D. C. Chan, Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18 , R169-176 (2009).
19. B. Baragana et al. , A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522 , 315-320 (2015).
20. P. P. Zhu et al. , Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279 , 35967-35974 (2004).
21. M. Aizawa, M. Fukuda, Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem 290 , 22250-22261 (2015).
22. A. Bourdoncle et al. , The nuclear receptor coactivator PGC-1alpha exhibits modes of interaction with the estrogen receptor distinct from those of SRC-1. J Mol Biol 347 , 921-934 (2005).