References:
Basso, A., Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis , 479, 110607. https://doi.org/10.1016/j.mcat.2019.110607
Bayramoglu, G., Arica, M.Y. (2008). Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of Hazardous Materials , 156 (1-3), 148-155. https://doi.org/10.1016/j.jhazmat.2007.12.008
Bedade, D.K., Sutar, Y.B., Singhal, R.S. (2019). Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee. Food Chemistry ,275 , 95-104. https://doi.org/10.1016/j.foodchem.2018.09.090
Bilal, M., Asgher, M., Cheng, H., Yan, Y., Iqbal, H.M.N. (2019). Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Critical Reviews in Biotechnology , 39 (2), 202-219. https://doi.org/10.1080/07388551.2018.1531822
Bilal, M., Iqbal, H.M.N. (2019). Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International Journal of Biological Macromolecules , 130 , 462-482. https://doi.org/10.1016/j.ijbiomac.2019.02.152
Cantone, S., Ferrario, V., Corici, L., Ebert, C., Fattor, D., Spizzo, P., Gardossi, L. (2013). Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chemical Society Reviews , 42 (15), 6262-6276. https://doi.org/10.1039/c3cs35464d
Cheng, Y., Zheng, F., Lu, J., Shang, L., Xie, Z., Zhao, Y., Chen, Y., Gu, Z. (2014). Bioinspired Multicompartmental Microfibers from Microfluidics. Advanced Materials , 26 (30), 5184-5190. https://doi.org/10.1002/adma.201400798
Coppi, G., Iannuccelli, V., Leo, E., Bernabei, M.T., Cameroni, R. (2002). Protein immobilization in crosslinked alginate microparticles.Journal of Microencapsulation , 19 (1), 37-44. https://doi.org/10.1080/02652040110055621
Dong, Y.L., Zhang, H.G., Rahman, Z.U., Su, L., Chen, X.J., Hu, J., Chen, X.G. (2012). Graphene oxide-Fe3O4magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale , 4 (13), 3969-3976. https://doi.org/10.1039/c2nr12109c
El-Naggar, M.E., Abdel-Aty, A.M., Wassel, A.R., Elaraby, N.M., Mohamed, S.A. (2021). Immobilization of horseradish peroxidase on cationic microporous starch: Physico-bio-chemical characterization and removal of phenolic compounds. International Journal of Biological Macromolecules , 181 , 734-742. https://doi.org/10.1016/j.ijbiomac.2021.03.171
Felisardo, R.J.A., Luque, A.M., Silva, Q.S., Soares, C.M.F., Fricks, A.T., Lima, Á.S., Cavalcanti, E.B. (2020). Biosensor of horseradish peroxidase immobilized onto self-assembled monolayers: Optimization of the deposition enzyme concentration. Journal of Electroanalytical Chemistry , 879 , 114784. https://doi.org/10.1016/j.jelechem.2020.114784
Gao, Q., He, Y., Fu, J.Z., Liu, A., Ma, L. (2015). Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials , 61 , 203-215. https://doi.org/10.1016/j.biomaterials.2015.05.031
Gejji, V., Fernando, S. (2018). Polyelectrolyte based technique for sequestration of protein from an aqueous phase to an organic solvent.Separation and Purification Technology , 207 , 68-76. https://doi.org/10.1016/j.seppur.2018.06.003
Grabovac, V., Laffleur, F., Bernkop-Schnürch, A. (2015). Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition. International Journal of Pharmaceutics , 493 (1-2), 374-379. https://doi.org/10.1016/j.ijpharm.2015.05.079
Grant, J., Modica, J.A., Roll, J., Perkovich, P., Mrksich, M. (2018). An Immobilized Enzyme Reactor for Spatiotemporal Control over Reaction Products. Small , 14 (31), e1800923. https://doi.org/10.1002/smll.201800923
Gunatilake, U.B., Garcia-Rey, S., Ojeda, E., Basabe-Desmonts, L., Benito-Lopez, F. (2021). TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Applied Materials & Interfaces , 13 (31), 37734-37745. https://doi.org/10.1021/acsami.1c11446
Hanefeld, U., Gardossi, L., Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews , 38 (2), 453-468. https://doi.org/10.1039/b711564b
He, W., Gao, Y., Zhu, G., Wu, H., Fang, Z., Guo, K. (2020). Microfluidic synthesis of fatty acid esters: Integration of dynamic combinatorial chemistry and scale effect. Chemical Engineering Journal ,381 , 122721. https://doi.org/10.1016/j.cej.2019.122721
Henderson, C.J., Pumford, E., Seevaratnam, D.J., Daly, R., Hall, E.A.H. (2019). Gene to diagnostic: Self immobilizing protein for silica microparticle biosensor, modelled with sarcosine oxidase.Biomaterials , 193 , 58-70. https://doi.org/10.1016/j.biomaterials.2018.12.003
Ho, W.F., Nguyen, L.T., Yang, K.L. (2019). A microfluidic sensor for detecting chlorophenols using cross-linked enzyme aggregates (CLEAs).Lab on a Chip , 19 (4), 634-640. https://doi.org/10.1039/c8lc01065j
Hu, C., Bai, Y.X., Hou, M., Wang, Y.S., Wang, L.C., Cao, X., Chan, C., Sun, H., Li, W.B., Ge, J., Ren, K.N. (2020). Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Science Advances ,6 (5), eaax5785. https://doi.org/10.1126/sciadv.aax5785
Huang, Q., Li, Y., Fan, L., Xin, J.H., Yu, H., Ye, D. (2020). Polymorphic calcium alginate microfibers assembled using a programmable microfluidic field for cell regulation. Lab on a Chip ,20 (17), 3158-3166. https://doi.org/10.1039/d0lc00517g
Jannat, M., Yang, K.L. (2020). A Millifluidic Device with Embedded Cross-Linked Enzyme Aggregates for Degradation of H2O2. ACS Applied Materials & Interfaces , 12 (5), 6768-6775. https://doi.org/10.1021/acsami.9b21480
Jeon, O., Bouhadir, K.H., Mansour, J.M., Alsberg, E. (2009). Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials , 30 (14), 2724-2734. https://doi.org/10.1016/j.biomaterials.2009.01.034
Jeong, W., Kim, J., Kim, S., Lee, S., Mensing, G., Beebe, D.J. (2004). Hydrodynamic microfabrication via ”on the fly” photopolymerization of microscale fibers and tubes. Lab on a Chip , 4 (6), 576-580. https://doi.org/10.1039/b411249k
Ji, J., Joh, H.I., Chung, Y., Kwon, Y. (2017). Glucose oxidase and polyacrylic acid based water swellable enzyme-polymer conjugates for promoting glucose detection. Nanoscale , 9 (41), 15998-16004. https://doi.org/10.1039/c7nr05545e
Jun, Y., Kang, E., Chae, S., Lee, S.H. (2014). Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab on a Chip , 14 (13), 2145-2160. https://doi.org/10.1039/c3lc51414e
Kabernick, D.C., Gostick, J.T., Ward, V.C.A. (2022). Kinetic characterization and modeling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. 1-13. Biotechnology and Bioengineering , https://doi.org/10.1002/bit.28046
Kahya, N., Erim, F.B. (2019). Surfactant modified alginate composite gels for controlled release of protein drug. Carbohydrate Polymers , 224 , 115165. https://doi.org/10.1016/j.carbpol.2019.115165
Kizilay, E., Seeman, D., Yan, Y., Du, X., Dubin, P.L., Donato-Capel, L., Bovetto, L., Schmitt, C. (2014). Structure of bovine beta-lactoglobulin-lactoferrin coacervates. Soft Matter ,10 (37), 7262-7268. https://doi.org/10.1039/c4sm01333f
Ko, E., Tran, V.-K., Son, S.E., Hur, W., Choi, H., Seong, G.H. (2019). Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sensors and Actuators B-Chemical , 294 , 166-176. https://doi.org/10.1016/j.snb.2019.05.051
Lee, C., Lee, S.-Y. (2016). Preparation of colorimetric hydrogel beads for hydrofluoric acid detection. Journal of Industrial and Engineering Chemistry , 38 , 67-72. https://doi.org/10.1016/j.jiec.2016.04.006
Li, Y., Huang, Z.Z., Weng, Y., Tan, H. (2019). Pyrophosphate ion-responsive alginate hydrogel as an effective fluorescent sensing platform for alkaline phosphatase detection. Chemical Communications , 55 (76), 11450-11453. https://doi.org/10.1039/c9cc05223b
Liang, S., Wu, X.-L., Xiong, J., Zong, M.-H., Lou, W.-Y. (2020). Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews ,406 , 213149. https://doi.org/10.1016/j.ccr.2019.213149
Liese, A., Hilterhaus, L. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews , 42 (15), 6236-6249. https://doi.org/10.1039/c3cs35511j
Lin, T., Zhong, L., Guo, L., Fu, F., Chen, G. (2014). Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale ,6 (20), 11856-11862. https://doi.org/10.1039/c4nr03393k
Liu, D.-M., Chen, J., Shi, Y.-P. (2018). Advances on methods and easy separated support materials for enzymes immobilization. Trends in Analytical Chemistry , 102 , 332-342. https://doi.org/10.1016/j.trac.2018.03.011
Liu, H., Nidetzky, B. (2021). Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin. Biotechnolgy and Bioengineering , 118 (11), 4402-4413. https://doi.org/10.1002/bit.27908
Liu, X., Xue, P., Jia, F., Shi, K., Gu, Y., Ma, L., Li, R. (2021). A novel approach to efficient degradation of indole using co-immobilized horseradish peroxidase-syringaldehyde as biocatalyst.Chemosphere , 262 , 128411. https://doi.org/10.1016/j.chemosphere.2020.128411
Nie, B., Stutzman, J., Xie, A. (2005). A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues.Biophysical Journal , 88 (4), 2833-2847. https://doi.org/10.1529/biophysj.104.047639
Othman, R., Vladisavljević, G.T., Nagy, Z.K. (2015). Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chemical Engineering Science , 137 , 119-130. https://doi.org/10.1016/j.ces.2015.06.025
Pawar, S.N., Edgar, K.J. (2012). Alginate derivatization: a review of chemistry, properties and applications. Biomaterials ,33 (11), 3279-3305. https://doi.org/10.1016/j.biomaterials.2012.01.007
Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International ,57 (2), 171-180. https://doi.org/10.1002/pi.2296
Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal ,373 , 1254-1278. https://doi.org/10.1016/j.cej.2019.05.141
Riccardi, C.M., Cole, K.S., Benson, K.R., Ward, J.R., Bassett, K.M., Zhang, Y., Zore, O.V., Stromer, B., Kasi, R.M., Kumar, C.V. (2014). Toward ”stable-on-the-table” enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).Bioconjugate Chemistry , 25 (8), 1501-1510. https://doi.org/10.1021/bc500233u
Rudroff, F., Mihovilovic, M.D., Gröger, H., Snajdrova, R., Iding, H., Bornscheuer, U.T. (2018). Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis , 1 (1), 12-22. https://doi.org/10.1038/s41929-017-0010-4
Secundo, F. (2013). Conformational changes of enzymes upon immobilisation. Chemical Society Reviews , 42 (15), 6250-6261. https://doi.org/10.1039/c3cs35495d
Shao, L., Gao, Q., Xie, C., Fu, J., Xiang, M., He, Y. (2019). Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product?Advanced Healthcare Materials , 8 (9), e1900014. https://doi.org/10.1002/adhm.201900014
Shao, L., Gao, Q., Zhao, H., Xie, C., Fu, J., Liu, Z., Xiang, M., He, Y. (2018). Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers. Small , 14 (44), e1802187. https://doi.org/10.1002/smll.201802187
Sheldon, R.A., van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews ,42 (15), 6223-6235. https://doi.org/10.1039/c3cs60075k
Shin, S., Park, J.Y., Lee, J.Y., Park, H., Park, Y.D., Lee, K.B., Whang, C.M., Lee, S.H. (2007). ”On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir , 23 (17), 9104-9108. https://doi.org/10.1021/la700818q
Singh, S., Mitra, K., Singh, R., Kumari, A., Sen Gupta, S.K., Misra, N., Maiti, P., Ray, B. (2017). Colorimetric detection of hydrogen peroxide and glucose using brominated graphene. Analytical Methods ,9 (47), 6675-6681. https://doi.org/10.1039/c7ay02212c
Singh, S., Singh, A., Bais, V.S., Prakash, B., Verma, N. (2014). Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization. Materials Science and Engineering C , 38 , 46-54. https://doi.org/10.1016/j.msec.2014.01.042
Teepakorn, C., Zajkoska, P., Cwicklinski, G., De Berardinis, V., Zaparucha, A., Nonglaton, G., Anxionnaz-Minvielle, Z. (2021). Nitrilase immobilization and transposition from a micro-scale batch to a continuous process increase the nicotinic acid productivity.Biotechnology Journal , 16 (10), e2100010. https://doi.org/10.1002/biot.202100010
Todea, A., Benea, I.C., Bîtcan, I., Péter, F., Klébert, S., Feczkó, T., Károly, Z., Biró, E. (2021). One-pot biocatalytic conversion of lactose to gluconic acid and galacto-oligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today , 366 , 202-211. https://doi.org/10.1016/j.cattod.2020.06.090
Wang, X., Zhu, K.X., Zhou, H.M. (2011). Immobilization of glucose oxidase in alginate-chitosan microcapsules. International Journal of Molecular Sciences , 12 (5), 3042-3054. https://doi.org/10.3390/ijms12053042
Wu, X., Yang, C., Ge, J., Liu, Z. (2015). Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale , 7 (45), 18883-18886. https://doi.org/10.1039/c5nr05190h
Yang, H., Guo, M. (2019). Bioinspired Polymeric Helical and Superhelical Microfibers via Microfluidic Spinning. Macromolecular Rapid Communication , 40 (12), e1900111. https://doi.org/10.1002/marc.201900111
Yang, J., Li, J., Ng, D.H.L., Yang, P., Yang, W., Liu, Y. (2020). Micromotor-assisted highly efficient Fenton catalysis by a laccase/Fe-BTC-NiFe2O4 nanozyme hybrid with a 3D hierarchical structure. Environmental Science Nano ,7 (9), 2573-2583. https://doi.org/10.1039/c9en01443h
Yu, Y., Fu, F., Shang, L., Cheng, Y., Gu, Z., Zhao, Y. (2017). Bioinspired Helical Microfibers from Microfluidics. Advanced Materials , 29 (18), 1605765. https://doi.org/10.1002/adma.201605765
Yu, Y., Shang, L., Guo, J., Wang, J., Zhao, Y. (2018). Design of capillary microfluidics for spinning cell-laden microfibers.Nature Protocols , 13 (11), 2557-2579. https://doi.org/10.1038/s41596-018-0051-4
Zanker, A.A., Ahmad, N., Son, T.H., Schwaminger, S.P., Berensmeier, S. (2021). Selective ene-reductase immobilization to magnetic nanoparticles through a novel affinity tag. Biotechnology Journal ,16 (4), e2000366. https://doi.org/10.1002/biot.202000366
Zdarta, J., Meyer, A., Jesionowski, T., Pinelo, M. (2018). A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts ,8 (2), 92. https://doi.org/10.3390/catal8020092
Zhang, D.M., Vangala, K., Jiang, D.P., Zou, S.G., Pechan, T. (2010). Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein. Applied Spectroscopy , 64 (10), 1078-1085. https://doi.org/10.1366/000370210792973497
Zhang, Y., Ge, J., Liu, Z. (2015). Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catalysis , 5 (8), 4503-4513. https://doi.org/10.1021/acscatal.5b00996
Zhou, Z., Hartmann, M. (2013). Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews , 42 (9), 3894-3912. https://doi.org/10.1039/c3cs60059a
Zhu, K., Yu, Y., Cheng, Y., Tian, C., Zhao, G., Zhao, Y. (2019a). All-Aqueous-Phase Microfluidics for Cell Encapsulation. ACS Applied Materials & Interfaces , 11 (5), 4826-4832. https://doi.org/10.1021/acsami.8b19234
Zhu, Y., Huang, Z., Chen, Q., Wu, Q., Huang, X., So, P.K., Shao, L., Yao, Z., Jia, Y., Li, Z., Yu, W., Yang, Y., Jian, A., Sang, S., Zhang, W., Zhang, X. (2019b). Continuous artificial synthesis of glucose precursor using enzyme-immobilized microfluidic reactors. Nature Communications , 10 (1), 4049. https://doi.org/10.1038/s41467-019-12089-6
Zore, O.V., Pande, P., Okifo, O., Basu, A.K., Kasi, R.M., Kumar, C.V. (2017). Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis. RSC Advances , 7 (47), 29563-29574. https://doi.org/10.1039/c7ra05666d