References:
Basso, A., Serban, S. (2019). Industrial applications of immobilized
enzymes—A review. Molecular Catalysis , 479, 110607.
https://doi.org/10.1016/j.mcat.2019.110607
Bayramoglu, G., Arica, M.Y. (2008). Enzymatic removal of phenol and
p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on
magnetic beads. Journal of Hazardous Materials , 156 (1-3),
148-155. https://doi.org/10.1016/j.jhazmat.2007.12.008
Bedade, D.K., Sutar, Y.B., Singhal, R.S. (2019). Chitosan coated calcium
alginate beads for covalent immobilization of acrylamidase: Process
parameters and removal of acrylamide from coffee. Food Chemistry ,275 , 95-104. https://doi.org/10.1016/j.foodchem.2018.09.090
Bilal, M., Asgher, M., Cheng, H., Yan, Y., Iqbal, H.M.N. (2019).
Multi-point enzyme immobilization, surface chemistry, and novel
platforms: a paradigm shift in biocatalyst design. Critical
Reviews in Biotechnology , 39 (2), 202-219.
https://doi.org/10.1080/07388551.2018.1531822
Bilal, M., Iqbal, H.M.N. (2019). Naturally-derived biopolymers:
Potential platforms for enzyme immobilization. International
Journal of Biological Macromolecules , 130 , 462-482.
https://doi.org/10.1016/j.ijbiomac.2019.02.152
Cantone, S., Ferrario, V., Corici, L., Ebert, C., Fattor, D., Spizzo,
P., Gardossi, L. (2013). Efficient immobilisation of industrial
biocatalysts: criteria and constraints for the selection of organic
polymeric carriers and immobilisation methods. Chemical Society
Reviews , 42 (15), 6262-6276. https://doi.org/10.1039/c3cs35464d
Cheng, Y., Zheng, F., Lu, J., Shang, L., Xie, Z., Zhao, Y., Chen, Y.,
Gu, Z. (2014). Bioinspired Multicompartmental Microfibers from
Microfluidics. Advanced Materials , 26 (30), 5184-5190.
https://doi.org/10.1002/adma.201400798
Coppi, G., Iannuccelli, V., Leo, E., Bernabei, M.T., Cameroni, R.
(2002). Protein immobilization in crosslinked alginate microparticles.Journal of Microencapsulation , 19 (1), 37-44.
https://doi.org/10.1080/02652040110055621
Dong, Y.L., Zhang, H.G., Rahman, Z.U., Su, L., Chen, X.J., Hu, J., Chen,
X.G. (2012). Graphene oxide-Fe3O4magnetic nanocomposites with peroxidase-like activity for colorimetric
detection of glucose. Nanoscale , 4 (13), 3969-3976.
https://doi.org/10.1039/c2nr12109c
El-Naggar, M.E., Abdel-Aty, A.M., Wassel, A.R., Elaraby, N.M., Mohamed,
S.A. (2021). Immobilization of horseradish peroxidase on cationic
microporous starch: Physico-bio-chemical characterization and removal of
phenolic compounds. International Journal of Biological
Macromolecules , 181 , 734-742.
https://doi.org/10.1016/j.ijbiomac.2021.03.171
Felisardo, R.J.A., Luque, A.M., Silva, Q.S., Soares, C.M.F., Fricks,
A.T., Lima, Á.S., Cavalcanti, E.B. (2020). Biosensor of horseradish
peroxidase immobilized onto self-assembled monolayers: Optimization of
the deposition enzyme concentration. Journal of Electroanalytical
Chemistry , 879 , 114784.
https://doi.org/10.1016/j.jelechem.2020.114784
Gao, Q., He, Y., Fu, J.Z., Liu, A., Ma, L. (2015). Coaxial
nozzle-assisted 3D bioprinting with built-in microchannels for nutrients
delivery. Biomaterials , 61 , 203-215.
https://doi.org/10.1016/j.biomaterials.2015.05.031
Gejji, V., Fernando, S. (2018). Polyelectrolyte based technique for
sequestration of protein from an aqueous phase to an organic solvent.Separation and Purification Technology , 207 , 68-76.
https://doi.org/10.1016/j.seppur.2018.06.003
Grabovac, V., Laffleur, F., Bernkop-Schnürch, A. (2015). Thiomers:
Influence of molecular mass and thiol group content of poly(acrylic
acid) on efflux pump inhibition. International Journal of
Pharmaceutics , 493 (1-2), 374-379.
https://doi.org/10.1016/j.ijpharm.2015.05.079
Grant, J., Modica, J.A., Roll, J., Perkovich, P., Mrksich, M. (2018). An
Immobilized Enzyme Reactor for Spatiotemporal Control over Reaction
Products. Small , 14 (31), e1800923.
https://doi.org/10.1002/smll.201800923
Gunatilake, U.B., Garcia-Rey, S., Ojeda, E., Basabe-Desmonts, L.,
Benito-Lopez, F. (2021). TiO2 Nanotubes Alginate
Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and
Glucose. ACS Applied Materials & Interfaces , 13 (31),
37734-37745. https://doi.org/10.1021/acsami.1c11446
Hanefeld, U., Gardossi, L., Magner, E. (2009). Understanding enzyme
immobilisation. Chemical Society Reviews , 38 (2), 453-468.
https://doi.org/10.1039/b711564b
He, W., Gao, Y., Zhu, G., Wu, H., Fang, Z., Guo, K. (2020). Microfluidic
synthesis of fatty acid esters: Integration of dynamic combinatorial
chemistry and scale effect. Chemical Engineering Journal ,381 , 122721. https://doi.org/10.1016/j.cej.2019.122721
Henderson, C.J., Pumford, E., Seevaratnam, D.J., Daly, R., Hall, E.A.H.
(2019). Gene to diagnostic: Self immobilizing protein for silica
microparticle biosensor, modelled with sarcosine oxidase.Biomaterials , 193 , 58-70.
https://doi.org/10.1016/j.biomaterials.2018.12.003
Ho, W.F., Nguyen, L.T., Yang, K.L. (2019). A microfluidic sensor for
detecting chlorophenols using cross-linked enzyme aggregates (CLEAs).Lab on a Chip , 19 (4), 634-640.
https://doi.org/10.1039/c8lc01065j
Hu, C., Bai, Y.X., Hou, M., Wang, Y.S., Wang, L.C., Cao, X., Chan, C.,
Sun, H., Li, W.B., Ge, J., Ren, K.N. (2020). Defect-induced activity
enhancement of enzyme-encapsulated metal-organic frameworks revealed in
microfluidic gradient mixing synthesis. Science Advances ,6 (5), eaax5785. https://doi.org/10.1126/sciadv.aax5785
Huang, Q., Li, Y., Fan, L., Xin, J.H., Yu, H., Ye, D. (2020).
Polymorphic calcium alginate microfibers assembled using a programmable
microfluidic field for cell regulation. Lab on a Chip ,20 (17), 3158-3166. https://doi.org/10.1039/d0lc00517g
Jannat, M., Yang, K.L. (2020). A Millifluidic Device with Embedded
Cross-Linked Enzyme Aggregates for Degradation of
H2O2. ACS Applied Materials &
Interfaces , 12 (5), 6768-6775.
https://doi.org/10.1021/acsami.9b21480
Jeon, O., Bouhadir, K.H., Mansour, J.M., Alsberg, E. (2009).
Photocrosslinked alginate hydrogels with tunable biodegradation rates
and mechanical properties. Biomaterials , 30 (14),
2724-2734. https://doi.org/10.1016/j.biomaterials.2009.01.034
Jeong, W., Kim, J., Kim, S., Lee, S., Mensing, G., Beebe, D.J. (2004).
Hydrodynamic microfabrication via ”on the fly” photopolymerization of
microscale fibers and tubes. Lab on a Chip , 4 (6), 576-580.
https://doi.org/10.1039/b411249k
Ji, J., Joh, H.I., Chung, Y., Kwon, Y. (2017). Glucose oxidase and
polyacrylic acid based water swellable enzyme-polymer conjugates for
promoting glucose detection. Nanoscale , 9 (41),
15998-16004. https://doi.org/10.1039/c7nr05545e
Jun, Y., Kang, E., Chae, S., Lee, S.H. (2014). Microfluidic spinning of
micro- and nano-scale fibers for tissue engineering. Lab on a
Chip , 14 (13), 2145-2160. https://doi.org/10.1039/c3lc51414e
Kabernick, D.C., Gostick, J.T., Ward, V.C.A. (2022). Kinetic
characterization and modeling of sequentially entrapped enzymes in
3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene
via the isopentenol utilization pathway. 1-13. Biotechnology and
Bioengineering , https://doi.org/10.1002/bit.28046
Kahya, N., Erim, F.B. (2019). Surfactant modified alginate composite
gels for controlled release of protein drug. Carbohydrate
Polymers , 224 , 115165.
https://doi.org/10.1016/j.carbpol.2019.115165
Kizilay, E., Seeman, D., Yan, Y., Du, X., Dubin, P.L., Donato-Capel, L.,
Bovetto, L., Schmitt, C. (2014). Structure of bovine
beta-lactoglobulin-lactoferrin coacervates. Soft Matter ,10 (37), 7262-7268. https://doi.org/10.1039/c4sm01333f
Ko, E., Tran, V.-K., Son, S.E., Hur, W., Choi, H., Seong, G.H. (2019).
Characterization of Au@PtNP/GO nanozyme and its application to
electrochemical microfluidic devices for quantification of hydrogen
peroxide. Sensors and Actuators B-Chemical , 294 , 166-176.
https://doi.org/10.1016/j.snb.2019.05.051
Lee, C., Lee, S.-Y. (2016). Preparation of colorimetric hydrogel beads
for hydrofluoric acid detection. Journal of Industrial and
Engineering Chemistry , 38 , 67-72.
https://doi.org/10.1016/j.jiec.2016.04.006
Li, Y., Huang, Z.Z., Weng, Y., Tan, H. (2019). Pyrophosphate
ion-responsive alginate hydrogel as an effective fluorescent sensing
platform for alkaline phosphatase detection. Chemical
Communications , 55 (76), 11450-11453.
https://doi.org/10.1039/c9cc05223b
Liang, S., Wu, X.-L., Xiong, J., Zong, M.-H., Lou, W.-Y. (2020).
Metal-organic frameworks as novel matrices for efficient enzyme
immobilization: An update review. Coordination Chemistry Reviews ,406 , 213149. https://doi.org/10.1016/j.ccr.2019.213149
Liese, A., Hilterhaus, L. (2013). Evaluation of immobilized enzymes for
industrial applications. Chemical Society Reviews , 42 (15),
6236-6249. https://doi.org/10.1039/c3cs35511j
Lin, T., Zhong, L., Guo, L., Fu, F., Chen, G. (2014). Seeing diabetes:
visual detection of glucose based on the intrinsic peroxidase-like
activity of MoS2 nanosheets. Nanoscale ,6 (20), 11856-11862. https://doi.org/10.1039/c4nr03393k
Liu, D.-M., Chen, J., Shi, Y.-P. (2018). Advances on methods and easy
separated support materials for enzymes immobilization. Trends in
Analytical Chemistry , 102 , 332-342.
https://doi.org/10.1016/j.trac.2018.03.011
Liu, H., Nidetzky, B. (2021). Leloir glycosyltransferases enabled to
flow synthesis: Continuous production of the natural C-glycoside
nothofagin. Biotechnolgy and Bioengineering , 118 (11),
4402-4413. https://doi.org/10.1002/bit.27908
Liu, X., Xue, P., Jia, F., Shi, K., Gu, Y., Ma, L., Li, R. (2021). A
novel approach to efficient degradation of indole using co-immobilized
horseradish peroxidase-syringaldehyde as biocatalyst.Chemosphere , 262 , 128411.
https://doi.org/10.1016/j.chemosphere.2020.128411
Nie, B., Stutzman, J., Xie, A. (2005). A vibrational spectral maker for
probing the hydrogen-bonding status of protonated Asp and Glu residues.Biophysical Journal , 88 (4), 2833-2847.
https://doi.org/10.1529/biophysj.104.047639
Othman, R., Vladisavljević, G.T., Nagy, Z.K. (2015). Preparation of
biodegradable polymeric nanoparticles for pharmaceutical applications
using glass capillary microfluidics. Chemical Engineering
Science , 137 , 119-130. https://doi.org/10.1016/j.ces.2015.06.025
Pawar, S.N., Edgar, K.J. (2012). Alginate derivatization: a review of
chemistry, properties and applications. Biomaterials ,33 (11), 3279-3305.
https://doi.org/10.1016/j.biomaterials.2012.01.007
Qin, Y. (2008). Alginate fibres: an overview of the production processes
and applications in wound management. Polymer International ,57 (2), 171-180. https://doi.org/10.1002/pi.2296
Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., Cui, J.
(2019). Recent progress in multienzymes co-immobilization and
multienzyme system applications. Chemical Engineering Journal ,373 , 1254-1278. https://doi.org/10.1016/j.cej.2019.05.141
Riccardi, C.M., Cole, K.S., Benson, K.R., Ward, J.R., Bassett, K.M.,
Zhang, Y., Zore, O.V., Stromer, B., Kasi, R.M., Kumar, C.V. (2014).
Toward ”stable-on-the-table” enzymes: improving key properties of
catalase by covalent conjugation with poly(acrylic acid).Bioconjugate Chemistry , 25 (8), 1501-1510.
https://doi.org/10.1021/bc500233u
Rudroff, F., Mihovilovic, M.D., Gröger, H., Snajdrova, R., Iding, H.,
Bornscheuer, U.T. (2018). Opportunities and challenges for combining
chemo- and biocatalysis. Nature Catalysis , 1 (1), 12-22.
https://doi.org/10.1038/s41929-017-0010-4
Secundo, F. (2013). Conformational changes of enzymes upon
immobilisation. Chemical Society Reviews , 42 (15),
6250-6261. https://doi.org/10.1039/c3cs35495d
Shao, L., Gao, Q., Xie, C., Fu, J., Xiang, M., He, Y. (2019).
Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product?Advanced Healthcare Materials , 8 (9), e1900014.
https://doi.org/10.1002/adhm.201900014
Shao, L., Gao, Q., Zhao, H., Xie, C., Fu, J., Liu, Z., Xiang, M., He, Y.
(2018). Fiber-Based Mini Tissue with Morphology-Controllable GelMA
Microfibers. Small , 14 (44), e1802187.
https://doi.org/10.1002/smll.201802187
Sheldon, R.A., van Pelt, S. (2013). Enzyme immobilisation in
biocatalysis: why, what and how. Chemical Society Reviews ,42 (15), 6223-6235. https://doi.org/10.1039/c3cs60075k
Shin, S., Park, J.Y., Lee, J.Y., Park, H., Park, Y.D., Lee, K.B., Whang,
C.M., Lee, S.H. (2007). ”On the fly” continuous generation of alginate
fibers using a microfluidic device. Langmuir , 23 (17),
9104-9108. https://doi.org/10.1021/la700818q
Singh, S., Mitra, K., Singh, R., Kumari, A., Sen Gupta, S.K., Misra, N.,
Maiti, P., Ray, B. (2017). Colorimetric detection of hydrogen peroxide
and glucose using brominated graphene. Analytical Methods ,9 (47), 6675-6681. https://doi.org/10.1039/c7ay02212c
Singh, S., Singh, A., Bais, V.S., Prakash, B., Verma, N. (2014).
Multi-scale carbon micro/nanofibers-based adsorbents for protein
immobilization. Materials Science and Engineering C , 38 ,
46-54. https://doi.org/10.1016/j.msec.2014.01.042
Teepakorn, C., Zajkoska, P., Cwicklinski, G., De Berardinis, V.,
Zaparucha, A., Nonglaton, G., Anxionnaz-Minvielle, Z. (2021). Nitrilase
immobilization and transposition from a micro-scale batch to a
continuous process increase the nicotinic acid productivity.Biotechnology Journal , 16 (10), e2100010.
https://doi.org/10.1002/biot.202100010
Todea, A., Benea, I.C., Bîtcan, I., Péter, F., Klébert, S., Feczkó, T.,
Károly, Z., Biró, E. (2021). One-pot biocatalytic conversion of lactose
to gluconic acid and galacto-oligosaccharides using immobilized
β-galactosidase and glucose oxidase. Catalysis Today , 366 ,
202-211. https://doi.org/10.1016/j.cattod.2020.06.090
Wang, X., Zhu, K.X., Zhou, H.M. (2011). Immobilization of glucose
oxidase in alginate-chitosan microcapsules. International Journal
of Molecular Sciences , 12 (5), 3042-3054.
https://doi.org/10.3390/ijms12053042
Wu, X., Yang, C., Ge, J., Liu, Z. (2015). Polydopamine tethered
enzyme/metal-organic framework composites with high stability and
reusability. Nanoscale , 7 (45), 18883-18886.
https://doi.org/10.1039/c5nr05190h
Yang, H., Guo, M. (2019). Bioinspired Polymeric Helical and Superhelical
Microfibers via Microfluidic Spinning. Macromolecular Rapid
Communication , 40 (12), e1900111.
https://doi.org/10.1002/marc.201900111
Yang, J., Li, J., Ng, D.H.L., Yang, P., Yang, W., Liu, Y. (2020).
Micromotor-assisted highly efficient Fenton catalysis by a
laccase/Fe-BTC-NiFe2O4 nanozyme hybrid
with a 3D hierarchical structure. Environmental Science Nano ,7 (9), 2573-2583. https://doi.org/10.1039/c9en01443h
Yu, Y., Fu, F., Shang, L., Cheng, Y., Gu, Z., Zhao, Y. (2017).
Bioinspired Helical Microfibers from Microfluidics. Advanced
Materials , 29 (18), 1605765.
https://doi.org/10.1002/adma.201605765
Yu, Y., Shang, L., Guo, J., Wang, J., Zhao, Y. (2018). Design of
capillary microfluidics for spinning cell-laden microfibers.Nature Protocols , 13 (11), 2557-2579.
https://doi.org/10.1038/s41596-018-0051-4
Zanker, A.A., Ahmad, N., Son, T.H., Schwaminger, S.P., Berensmeier, S.
(2021). Selective ene-reductase immobilization to magnetic nanoparticles
through a novel affinity tag. Biotechnology Journal ,16 (4), e2000366. https://doi.org/10.1002/biot.202000366
Zdarta, J., Meyer, A., Jesionowski, T., Pinelo, M. (2018). A General
Overview of Support Materials for Enzyme Immobilization:
Characteristics, Properties, Practical Utility. Catalysts ,8 (2), 92. https://doi.org/10.3390/catal8020092
Zhang, D.M., Vangala, K., Jiang, D.P., Zou, S.G., Pechan, T. (2010).
Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate
Labeled Protein. Applied Spectroscopy , 64 (10), 1078-1085.
https://doi.org/10.1366/000370210792973497
Zhang, Y., Ge, J., Liu, Z. (2015). Enhanced Activity of Immobilized or
Chemically Modified Enzymes. ACS Catalysis , 5 (8),
4503-4513. https://doi.org/10.1021/acscatal.5b00996
Zhou, Z., Hartmann, M. (2013). Progress in enzyme immobilization in
ordered mesoporous materials and related applications. Chemical
Society Reviews , 42 (9), 3894-3912.
https://doi.org/10.1039/c3cs60059a
Zhu, K., Yu, Y., Cheng, Y., Tian, C., Zhao, G., Zhao, Y. (2019a).
All-Aqueous-Phase Microfluidics for Cell Encapsulation. ACS
Applied Materials & Interfaces , 11 (5), 4826-4832.
https://doi.org/10.1021/acsami.8b19234
Zhu, Y., Huang, Z., Chen, Q., Wu, Q., Huang, X., So, P.K., Shao, L.,
Yao, Z., Jia, Y., Li, Z., Yu, W., Yang, Y., Jian, A., Sang, S., Zhang,
W., Zhang, X. (2019b). Continuous artificial synthesis of glucose
precursor using enzyme-immobilized microfluidic reactors. Nature
Communications , 10 (1), 4049.
https://doi.org/10.1038/s41467-019-12089-6
Zore, O.V., Pande, P., Okifo, O., Basu, A.K., Kasi, R.M., Kumar, C.V.
(2017). Nanoarmoring: strategies for preparation of multi-catalytic
enzyme polymer conjugates and enhancement of high temperature
biocatalysis. RSC Advances , 7 (47), 29563-29574.
https://doi.org/10.1039/c7ra05666d