REFERENCES
Agga, G. E., Schmidt, J. W., & Arthur, T. M. (2016). Effects of in-feed
chlortetracycline prophylaxis in beef cattle on animal health and
antimicrobial-resistant Escherichia coli . Applied
Environmental Microbiology, 82(24), 7197–204.
https://doi.org/10.1128/AEM.01928-16
Alhaji, N. B., Haruna, A.E., Muhammad, B., Lawan, M. K., & Isola, T. O.
(2018). Antimicrobials usage assessments in commercial poultry and local
birds in North-central Nigeria: Associated pathways and factors for
resistance emergence and spread. Preventive Veterinary Medicine,154, 139–147. https://doi.org/10.1016/j.prevetmed.2020.104974
Alhaji, N. B., & Isola, T. O. (2018). Antimicrobial usage by
pastoralists in food animals in North- central Nigeria: The associated
socio-cultural drivers for antimicrobials misuse and public health
implications. One Health , 6(1), 41–47.
https://doi.org/10.1016/j.onehlt.2018.11.001
Andersson, D. I., & Hughes, D. (2014). Microbiological effects of
sublethal levels of antibiotics. Nature Reviews Microbiology ,
12(7), 465–78. https://doi.org/10.1038/nrmicro3270
Byarugaba, D. K. (2004). A view on antimicrobial resistance in
developing countries and responsible risk factors. International
Journal of Antimicrobial Agents , 24, 105–110.
Cameron, A., & McAllister, T. A. (2016). Antimicrobial usage and
resistance in beef production. Journal of Animal Science and
Biotechnology , 7, 68–89.
https://doi.org/10.1186/s40104-
016-0127-3
Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria:
a challenge for the food industry. Critical Reviews in Food
Science and Nutrition , 53, 11–48.
https://doi.org/10.1080/10408398.2010.519837
Cogliani, C., Goossens, H., & Greko, C. (2011). Restricting
antimicrobial use in food animals: lessons from Europe. Microbe6, 274–279. https://doi/10.1128/MICROBE.6.274.1
Cuong. N. V., Padungtod, P., Thwaites, G., & Carrique-Mas, J. J.
(2018). Antimicrobial Usage in Animal Production: A Review of the
Literature with a Focus on Low- and Middle- Income Countries.Antibiotics , 7, 75–94.
https://doi.org/10.3390/antibiotics7030075
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic
resistance. Microbiology and Molecular Biology Review , 74,
417–433. https://doi/10.1128/MMBR.00016-10
Dean, A. G, Sullivan, K. M., & Soe, M. M. (2009). OpenEpi: Open Source
Epidemiologic Statistics for Public Health, Version 2.3.1. Retrieved
from http://www.openepi.com/OE2.3/Menu/OpenEpiMenu.htm
Dohoo, I., Martin. W., & Studahl. H. (2012). Measures of association.
In S. M. McPike (Ed.), Veterinary epidemiologic research , 2nd edn
(pp. 136–148). Charlottetown, PE, Canada: University of Prince Edward
Island.
Doyle, M .E. (2015). Multidrug-resistant pathogens in the food supply.Foodborne Pathogens and Disease , 12, 261–279.
https://doi/10.1038/nrmicro3270
FAO (2015). Food outlook: Biannual report on global food markets. Food
and Agriculture Organization of the United Nations, Rome. 2015.
Retrieved from
http://www.fao.org/news/archive/news-by-
date/2015/en/?page=2&ipp=10&tx_dynalist_pi1[par]=YToxOntzOjE6IkwiO3M6MToiM
CI7fQ
FAO (2016). The FAO action plan on antimicrobial resistance 2016–2020:
supporting the agriculture sectors in implementing the global action
plan on antimicrobial resistance to minimize the impact of antimicrobial
resistance. Food and Agriculture Organization of the United Nations
(FAO), Rome. Retrieved from
www.fao.org/publications
FAO (2018). Food and Agriculture Organization of the United Nations.
Global and regional food consumption patterns and trends. FAO, Rome.
Retrieved from http://www.fao.org/docrep/005/AC911E/ac911e05.htm
FAOSTAT (2018). The Food and Agriculture Organization of the United
Nations Statistics (FAOSTAT). FAO, Rome. Retrieved from
www.fao.org/faostat/en/
Garforth, C. (2015). Livestock keepers’ reasons for doing and not doing
things which governments, vets and scientists would like them to do.
Zoonoses and Public Health, 62, 29–38.
https://doi.org/10.1111/zph.12189
Grabkowsky, B. (2009). Strategies for Prevention, Monitoring and Control
of Avian Influenza at Farm Level. Retrieved from
http://www.thepoultrysite.com/articles/1421/strategies-for-
prevention-monitoring-andcontrol-of-avian-influenza-at-farm-level/
Harada, K., & Asai, T. (2010). Role of antimicrobial selective pressure
and secondary factors on antimicrobial resistance prevalence in
Escherichia coli from food-producing animals in Japan. Journal of
Biomedicine and Biotechnology , 2010:180682.
http://dx.doi.org/10.1155/2010/180682
Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L., Dai,
M., …..Yuan, Z. (2014). Benefits and risks of antimicrobial use
in food-producing animals. Frontiers in Microbiology, 5, 288.
https://doi.org/10.3389/fmicb.2014.00288
Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri,
S. & Rufino, M .C. (2013). The roles of livestock in developing
countries. Animal , 7(s1) 1, 3–18.
Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi,
S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2015) .
Understanding the mechanisms and drivers of ‘antimicrobial
resistance. Lancet , 387.
http://dx.doi.org/10.1016/S0140-6736(15)00473-0
Hong, P. Y., Yannarell, A., & Mackie, R.I. (2011). The Contribution of
Antibiotic Residues and Antibiotic Resistance Genes from Livestock
Operations to Antibiotic Resistance in the Environment and Food Chain.
CABI, Wallingford.
Kruse, A. B., Kristensen, C. S., Nielsen, L. R. & Alban, L. (2019). A
register-based study on associations between vaccination, antimicrobial
use and productivity in conventional Danish finisher pig herds during
2011 to 2014. Preventive Veterinary Medicine , 164, 33– 40.
https://doi.org/10.1016/j.prevetmed.2019.01.007
Kimera, Z. I, Mshana, S. E., Rweyemamu, M. M., Mboera, L. E. G., &
Matee, M. I. N. (2020). Antimicrobial use and resistance in food
producing animals and the environment: an African perspective.Antimicrobial Resistance and Infection Control , 9, 37–48.
https://doi.org/10.1186/s13756-020-0697-x
Kunin, C.M. (1993). Resistance to antimicrobial drugs–a worldwide
calamity. Annals of International Medicine , 118(7), 557–561.
https://doi.org/10.7326/0003-4819-118-7-
199304010-00011
Larissa, J., Pletinckxa, V. M., Crombé, F., Dewulf, J., Bleecke, Y.D.,
Rasschaert, G., Butaye, P., …… Man, I. D. (2013). Evidence of
possible methicillin-resistant Staphylococcus aureus ST398 spread
between pigs and other animals and people residing on the same farm.Preventive Veterinary Medicine , 109(3-4), 293–303.
https://doi.org/10.1016/j.prevetmed.2012.10.019
Li, J., Wang, T., Shao, B., Shen, J., Wang, S., & Wu, Y. (2012).
Plasmid-mediated quinolone resistance genes and antibiotic residues in
wastewater and soil adjacent to swine feedlots: potential transfer to
agricultural lands. Environmental Health Perspectives , 120,
1144– 1149. https://doi.org/10.1289/ehp.11047766
Li, S., Shi, W., Liu, W., Li, H., Zhang, W., Hu, J., Ke, Y., & Ni, J.
(2018) A duodecennial national synthesis of antibiotics in China’s major
rivers and seas (2005–2016). The Science of the Total
Enviroment, 615, 906–917.
https://doi.org/10.1016/j.scitotenv.2017.09.328
Maron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on
antimicrobial use in food animal production: an international regulatory
and economic survey. Globalization and Health, 9, 48.
https://doi.org/10.1186/1744-8603-9-48
Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials:
impacts on human health. Clinical Microbiology Reviews , 24(4),
718–733. https://doi.org/10.1128/CMR.00002-11
Marti, R., Scott, A., Tien, Y. C., Murray, R., Sabourin, L., Zhang, Y.,
Topp, E. (2013). Impact of manure fertilization on the abundance of
antibiotic-resistant bacteria and frequency of detection of antibiotic
resistance genes in soil and on vegetables at harvest. Applied
Environmental Microbiology , 79, 5701–5709.
https://doi.org/10.1128/AEM.01682-13
McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer,
G. D., Cox, S. B., & Smith, P.N. (2015). Antibiotics, bacteria, and
antibiotic resistance genes: aerial transport from cattle feed yards via
particulate matter. Environmental Health Perspectives , 123,
337–343.
McEwen, S. A. (2006). Antibiotic use in animal agriculture: what have we
learned and where are we going? Animal Biotechnology , 17(2),
239–250. https://doi.org/10.1080/10495390600957233
Mtenga, A., Emanuel, M., Mabula, J., & Peter, R. (2011). Consumer and
Practitioner Education: Status of Antibiotic Resistance. Alliance for
the Prudent use of Antibiotics (APUA), 136 Harrison Avenue, Boston.
NASS (2011). National Bureau of Statistics/Federal Ministry of
Agriculture and Rural Development Collaborative Survey on National
Agriculture Sample Survey (NASS), 2010 to 2011. Retrieved from
https://research.csiro.au/livegaps/findings/livestock-
production/dairy-production-in-nigeria/
Novo, A., Andre, S., Viana, P., Nunes, O. C., & Manaia, C. M. (2013).
Antibiotic resistance, antimicrobial residues and bacterial community
composition in urban wastewater. Water Research, 47, 1875–1887.
https://doi.org/10.1016/j.watres.2013.01.010
Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P.,
O’Brien, T. F., PablosMendez, A., & Klugman, K.P. (2005). Antimicrobial
resistance in developing countries. Part I: recent trends and current
status. Lancet Infectious Disease , 5(8), 481– 493.
https://doi.org/10.1016/S1473-3099(05)70189-4
O’Neill J. (2014). Antimicrobial resistance: tackling a crisis for the
health and wealth of nations. Retrieved from https://www.amr-revieworg/
Oosting, S. J., Udo, H. M. & Viets, T. C. (2014). Development of
livestock production in the tropics: farm and farmers’ perspectives.Animal , 8(8), 1238–48.
https://doi.org/10.1017/S1751731114000548
Peel, D. S. (2003). Beef cattle growing and backgrounding programs.Veterinary Clinics: Food Animal Practice , 19(2), 365–385.
https://doi.org/10.1016/S0749-0720(03)00032-X
Pokharel, S., Shrestha, P., & Adhikari, B. (2020). Antimicrobial use in
food animals and human health: time to implement ‘One Health’ approach.Antimicrobial Resistance and Infection Control , 9:181–185.
https://doi.org/10.1186/s13756-020-00847-x
Pradere, J. P. (2014). Improving animal health and livestock
productivity to reduce poverty. Revue Scientifique et
Technique-Office International Des Epizooties , 33(3), 723–734.
Randolph, T. F., Schelling, E., Grace, D., Nicholson, C.F., Leroy, J.L.,
Cole, D.C., Demment, M.W., …… Ruel, M. (2007). Invited
review: Role of livestock in human nutrition and health for poverty
reduction in developing countries. Journal of Animal Science, 85,
2788–2800.
Shahbazi, Y., Ahmadi, F., & Karami N. (2015). Screening, determination
and confirmation of tetracycline residues in chicken tissues using
four-plate test, ELISA and HPLC-UV methods: comparison between
correlation results. Food and Agricultural Immunology , 26(6),
821–834. https://doi.org/10.1080/09540105.2015.1036357
Thrusfield, M. (2009). Veterinary Epidemiology. 3rd edn, pp 228–238.
Wiley-Blackwell, Oxford.
UN (2015). Transforming our World: The 2030 Agenda for Sustainable
Development . United Nations. Retrieved from
https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S.
A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global
trends in antimicrobial use in food animals. PNAS , 112(18),
5649–5654. https://dx.doi.org/10.1073/pnas.1503141112
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J.,
Criscuolo, N. G., Gilbert, M., … Laxminarayan, R. (2019). Global
trends in antimicrobial resistance in animals in low- and middle-income
countries. Science , 365(6459), eaaw1944.
https://dx.doi.org/10.1126/science.aaw1944
WMADH (2001). Ethical principles for medical research involving human
subjects. The World Medical Association Declaration of Helsinki.Bulletin of World Health Organization , 79, 373–374.
Woolridge, M. (2012). Evidence for the circulation of
antimicrobial-resistant strains and genes in nature and especially
between humans and animals. Revue Scientifique et Technique-
Office International Des Epizooties , 31, 231–247.
WHO (2012). Critically Important Antimicrobials for Human Medicine, 3rd
Revision 2011. World Health Organization, Geneva, Switzerland. Retrieved
from
http://apps.who.int/iris/bitstream/10665/77376/1/9789241504485_eng.pdf
World Bank (2017). Drug resistant infections: a threat to our economic
future. World Bank, Washington, DC. Retrieved from
https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-
to-our-economic-future
WHO (2018). Antimicrobial resistance. World Health Organization, Geneva,
Switzerland. Retrieved from
http://www.who.int/antimicrobial-resistance/en/
Zhao, J., Chen, Z., Chen, S., Deng, Y., Liu, Y., Tian, W., Huang,
X.,… Liu, J. H. (2010). Prevalence and dissemination of oqxAB in
Escherichia coli isolates from animals, farm workers, and the
environment. Antimicrobial Agents Chemotherapy , 54 (10),
4219–4224. http://dx.doi.org/10.1128/AAC.00139-10
Zowawi, H. M., Harris, P. N., Roberts, M. J., Tambyahm, P. A., Schembri,
M. A., Pezzani, M. D., Williamson, D., & Peterson, D. (2015). The
emerging threat of multidrug-resistant Gram-negative bacteria in
urology. Nature Review Urology, 12, 570–584.
http://dx.doi.org/10.1038/nrurol.215.199