REFERENCES
Agga, G. E., Schmidt, J. W., & Arthur, T. M. (2016). Effects of in-feed chlortetracycline prophylaxis in beef cattle on animal health and antimicrobial-resistant Escherichia coli . Applied Environmental Microbiology, 82(24), 7197–204. https://doi.org/10.1128/AEM.01928-16
Alhaji, N. B., Haruna, A.E., Muhammad, B., Lawan, M. K., & Isola, T. O. (2018). Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Preventive Veterinary Medicine,154, 139–147. https://doi.org/10.1016/j.prevetmed.2020.104974
Alhaji, N. B., & Isola, T. O. (2018). Antimicrobial usage by pastoralists in food animals in North- central Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health , 6(1), 41–47. https://doi.org/10.1016/j.onehlt.2018.11.001
Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology , 12(7), 465–78. https://doi.org/10.1038/nrmicro3270
Byarugaba, D. K. (2004). A view on antimicrobial resistance in developing countries and responsible risk factors. International Journal of Antimicrobial Agents , 24, 105–110.
Cameron, A., & McAllister, T. A. (2016). Antimicrobial usage and resistance in beef production. Journal of Animal Science and Biotechnology , 7, 68–89. https://doi.org/10.1186/s40104- 016-0127-3
Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Critical Reviews in Food Science and Nutrition , 53, 11–48. https://doi.org/10.1080/10408398.2010.519837
Cogliani, C., Goossens, H., & Greko, C. (2011). Restricting antimicrobial use in food animals: lessons from Europe. Microbe6, 274–279. https://doi/10.1128/MICROBE.6.274.1
Cuong. N. V., Padungtod, P., Thwaites, G., & Carrique-Mas, J. J. (2018). Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle- Income Countries.Antibiotics , 7, 75–94. https://doi.org/10.3390/antibiotics7030075
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Review , 74, 417–433. https://doi/10.1128/MMBR.00016-10
Dean, A. G, Sullivan, K. M., & Soe, M. M. (2009). OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 2.3.1. Retrieved from http://www.openepi.com/OE2.3/Menu/OpenEpiMenu.htm
Dohoo, I., Martin. W., & Studahl. H. (2012). Measures of association. In S. M. McPike (Ed.), Veterinary epidemiologic research , 2nd edn (pp. 136–148). Charlottetown, PE, Canada: University of Prince Edward Island.
Doyle, M .E. (2015). Multidrug-resistant pathogens in the food supply.Foodborne Pathogens and Disease , 12, 261–279. https://doi/10.1038/nrmicro3270
FAO (2015). Food outlook: Biannual report on global food markets. Food and Agriculture Organization of the United Nations, Rome. 2015. Retrieved from http://www.fao.org/news/archive/news-by- date/2015/en/?page=2&ipp=10&tx_dynalist_pi1[par]=YToxOntzOjE6IkwiO3M6MToiM CI7fQ
FAO (2016). The FAO action plan on antimicrobial resistance 2016–2020: supporting the agriculture sectors in implementing the global action plan on antimicrobial resistance to minimize the impact of antimicrobial resistance. Food and Agriculture Organization of the United Nations (FAO), Rome. Retrieved from www.fao.org/publications
FAO (2018). Food and Agriculture Organization of the United Nations. Global and regional food consumption patterns and trends. FAO, Rome. Retrieved from http://www.fao.org/docrep/005/AC911E/ac911e05.htm
FAOSTAT (2018). The Food and Agriculture Organization of the United Nations Statistics (FAOSTAT). FAO, Rome. Retrieved from www.fao.org/faostat/en/
Garforth, C. (2015). Livestock keepers’ reasons for doing and not doing things which governments, vets and scientists would like them to do. Zoonoses and Public Health, 62, 29–38. https://doi.org/10.1111/zph.12189
Grabkowsky, B. (2009). Strategies for Prevention, Monitoring and Control of Avian Influenza at Farm Level. Retrieved from http://www.thepoultrysite.com/articles/1421/strategies-for- prevention-monitoring-andcontrol-of-avian-influenza-at-farm-level/
Harada, K., & Asai, T. (2010). Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. Journal of Biomedicine and Biotechnology , 2010:180682. http://dx.doi.org/10.1155/2010/180682
Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, L.,  Dai, M., …..Yuan, Z. (2014). Benefits and risks of antimicrobial use in food-producing animals. Frontiers in Microbiology, 5, 288. https://doi.org/10.3389/fmicb.2014.00288
Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S. & Rufino, M .C. (2013). The roles of livestock in developing countries. Animal , 7(s1) 1, 3–18.
Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2015) . Understanding the mechanisms and drivers of ‘antimicrobial resistance. Lancet , 387. http://dx.doi.org/10.1016/S0140-6736(15)00473-0
Hong, P. Y., Yannarell, A., & Mackie, R.I. (2011). The Contribution of Antibiotic Residues and Antibiotic Resistance Genes from Livestock Operations to Antibiotic Resistance in the Environment and Food Chain. CABI, Wallingford.
Kruse, A. B., Kristensen, C. S., Nielsen, L. R. & Alban, L. (2019). A register-based study on associations between vaccination, antimicrobial use and productivity in conventional Danish finisher pig herds during 2011 to 2014. Preventive Veterinary Medicine , 164, 33– 40. https://doi.org/10.1016/j.prevetmed.2019.01.007
Kimera, Z. I, Mshana, S. E., Rweyemamu, M. M., Mboera, L. E. G., & Matee, M. I. N. (2020). Antimicrobial use and resistance in food producing animals and the environment: an African perspective.Antimicrobial Resistance and Infection Control , 9, 37–48. https://doi.org/10.1186/s13756-020-0697-x
Kunin, C.M. (1993). Resistance to antimicrobial drugs–a worldwide calamity. Annals of International Medicine , 118(7), 557–561. https://doi.org/10.7326/0003-4819-118-7- 199304010-00011
Larissa, J., Pletinckxa, V. M., Crombé, F., Dewulf, J., Bleecke, Y.D., Rasschaert, G., Butaye, P., …… Man, I. D. (2013). Evidence of possible methicillin-resistant Staphylococcus aureus ST398 spread between pigs and other animals and people residing on the same farm.Preventive Veterinary Medicine , 109(3-4), 293–303. https://doi.org/10.1016/j.prevetmed.2012.10.019
Li, J., Wang, T., Shao, B., Shen, J., Wang, S., & Wu, Y. (2012). Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: potential transfer to agricultural lands. Environmental Health Perspectives , 120, 1144– 1149. https://doi.org/10.1289/ehp.11047766
Li, S., Shi, W., Liu, W., Li, H., Zhang, W., Hu, J., Ke, Y., & Ni, J. (2018) A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). The Science of the Total Enviroment, 615, 906–917. https://doi.org/10.1016/j.scitotenv.2017.09.328
Maron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Globalization and Health, 9, 48. https://doi.org/10.1186/1744-8603-9-48
Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews , 24(4), 718–733. https://doi.org/10.1128/CMR.00002-11
Marti, R., Scott, A., Tien, Y. C., Murray, R., Sabourin, L., Zhang, Y., Topp, E. (2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied Environmental Microbiology , 79, 5701–5709. https://doi.org/10.1128/AEM.01682-13
McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P.N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives , 123, 337–343.
McEwen, S. A. (2006). Antibiotic use in animal agriculture: what have we learned and where are we going? Animal Biotechnology , 17(2), 239–250. https://doi.org/10.1080/10495390600957233
Mtenga, A., Emanuel, M., Mabula, J., & Peter, R. (2011). Consumer and Practitioner Education: Status of Antibiotic Resistance. Alliance for the Prudent use of Antibiotics (APUA), 136 Harrison Avenue, Boston.
NASS (2011). National Bureau of Statistics/Federal Ministry of Agriculture and Rural Development Collaborative Survey on National Agriculture Sample Survey (NASS), 2010 to 2011. Retrieved from https://research.csiro.au/livegaps/findings/livestock- production/dairy-production-in-nigeria/
Novo, A., Andre, S., Viana, P., Nunes, O. C., & Manaia, C. M. (2013). Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Research, 47, 1875–1887. https://doi.org/10.1016/j.watres.2013.01.010
Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., PablosMendez, A., & Klugman, K.P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infectious Disease , 5(8), 481– 493. https://doi.org/10.1016/S1473-3099(05)70189-4
O’Neill J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Retrieved from https://www.amr-revieworg/
Oosting, S. J., Udo, H. M. & Viets, T. C. (2014). Development of livestock production in the tropics: farm and farmers’ perspectives.Animal , 8(8), 1238–48. https://doi.org/10.1017/S1751731114000548
Peel, D. S. (2003). Beef cattle growing and backgrounding programs.Veterinary Clinics: Food Animal Practice , 19(2), 365–385. https://doi.org/10.1016/S0749-0720(03)00032-X
Pokharel, S., Shrestha, P., & Adhikari, B. (2020). Antimicrobial use in food animals and human health: time to implement ‘One Health’ approach.Antimicrobial Resistance and Infection Control , 9:181–185. https://doi.org/10.1186/s13756-020-00847-x
Pradere, J. P. (2014). Improving animal health and livestock productivity to reduce poverty. Revue Scientifique et Technique-Office International Des Epizooties , 33(3), 723–734.
Randolph, T. F., Schelling, E., Grace, D., Nicholson, C.F., Leroy, J.L., Cole, D.C., Demment, M.W., …… Ruel, M. (2007). Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science, 85, 2788–2800.
Shahbazi, Y., Ahmadi, F., & Karami N. (2015). Screening, determination and confirmation of tetracycline residues in chicken tissues using four-plate test, ELISA and HPLC-UV methods: comparison between correlation results. Food and Agricultural Immunology , 26(6), 821–834. https://doi.org/10.1080/09540105.2015.1036357
Thrusfield, M. (2009). Veterinary Epidemiology. 3rd edn, pp 228–238. Wiley-Blackwell, Oxford.
UN (2015). Transforming our World: The 2030 Agenda for Sustainable Development . United Nations. Retrieved from https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals.  PNAS , 112(18), 5649–5654. https://dx.doi.org/10.1073/pnas.1503141112
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., … Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science , 365(6459), eaaw1944. https://dx.doi.org/10.1126/science.aaw1944
WMADH (2001). Ethical principles for medical research involving human subjects. The World Medical Association Declaration of Helsinki.Bulletin of World Health Organization , 79, 373–374.
Woolridge, M. (2012). Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. Revue Scientifique et Technique- Office International Des Epizooties , 31, 231–247.
WHO (2012). Critically Important Antimicrobials for Human Medicine, 3rd Revision 2011. World Health Organization, Geneva, Switzerland. Retrieved from http://apps.who.int/iris/bitstream/10665/77376/1/9789241504485_eng.pdf
World Bank (2017). Drug resistant infections: a threat to our economic future. World Bank, Washington, DC. Retrieved from https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat- to-our-economic-future
WHO (2018). Antimicrobial resistance. World Health Organization, Geneva, Switzerland. Retrieved from http://www.who.int/antimicrobial-resistance/en/
Zhao, J., Chen, Z., Chen, S., Deng, Y., Liu, Y., Tian, W., Huang, X.,… Liu, J. H. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farm workers, and the environment. Antimicrobial Agents Chemotherapy , 54 (10), 4219–4224. http://dx.doi.org/10.1128/AAC.00139-10
Zowawi, H. M., Harris, P. N., Roberts, M. J., Tambyahm, P. A., Schembri, M. A., Pezzani, M. D., Williamson, D., & Peterson, D. (2015). The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nature Review Urology, 12, 570–584. http://dx.doi.org/10.1038/nrurol.215.199