References
Andrews, S. (2010). FastQC A Quality Control tool for High
Throughput Sequence Data .
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M.,
Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A.
D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev,
M. A., & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. Journal of
Computational Biology: A Journal of Computational Molecular Cell
Biology , 19 (5), 455–477. https://doi.org/10.1089/cmb.2012.0021
Borowiec, M. L. (2016). AMAS: a fast tool for alignment manipulation and
computing of summary statistics. In PeerJ (Vol. 4, p. e1660).
https://doi.org/10.7717/peerj.1660
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S.,
Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De
Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A.,
du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I.,
… Drummond, A. J. (2019). BEAST 2.5: An advanced software
platform for Bayesian evolutionary analysis. PLoS Computational
Biology , 15 (4), e1006650.
https://doi.org/10.1371/journal.pcbi.1006650
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast
all-in-one FASTQ preprocessor. In Bioinformatics (Vol. 34, Issue
17, pp. i884–i890). https://doi.org/10.1093/bioinformatics/bty560
Darriba, D., Flouri, T., & Stamatakis, A. (2018). The state of software
for evolutionary biology. Molecular Biology and Evolution ,35 (5), 1037–1046. https://doi.org/10.1093/molbev/msy014
DeSalle, R., Tessler, M., & Rosenfeld, J. (2020). Phylogenetic Programs
and Websites. In Phylogenomics (pp. 213–222). CRC Press.
https://doi.org/10.1201/9780429397547-20
Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis
of conserved genomic loci. Bioinformatics , 32 (5),
786–788. https://doi.org/10.1093/bioinformatics/btv646
Grealey, J., Lannelongue, L., Saw, W.-Y., Marten, J., Méric, G.,
Ruiz-Carmona, S., & Inouye, M. (2022). The Carbon Footprint of
Bioinformatics. Molecular Biology and Evolution , 39 (3).
https://doi.org/10.1093/molbev/msac034
Hutter, C. R., Cobb, K. A., Portik, D. M., Travers, S. L., Wood, P. L.,
Jr, & Brown, R. M. (2022). FrogCap: A modular sequence capture
probe-set for phylogenomics and population genetics for all frogs,
assessed across multiple phylogenetic scales. Molecular Ecology
Resources , 22 (3), 1100–1119.
https://doi.org/10.1111/1755-0998.13517
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C.,
Ho, S. Y. W., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A.,
Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L.,
Narula, N., Liu, L., … Zhang, G. (2014). Whole-genome analyses
resolve early branches in the tree of life of modern birds.Science , 346 (6215), 1320–1331.
https://doi.org/10.1126/science.1253451
Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Research , 30 (14), 3059–3066.
https://doi.org/10.1093/nar/gkf436
Köster, J. (2016). Rust-Bio: a fast and safe bioinformatics library.Bioinformatics , 32 (3), 444–446.
https://doi.org/10.1093/bioinformatics/btv573
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A.
(2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics ,35 (21), 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
Kück, P., & Longo, G. C. (2014). FASconCAT-G: extensive functions for
multiple sequence alignment preparations concerning phylogenetic
studies. Frontiers in Zoology , 11 (1), 81.
https://doi.org/10.1186/s12983-014-0081-x
Lemoine, F., & Gascuel, O. (2021). Gotree/Goalign: toolkit and Go API
to facilitate the development of phylogenetic workflows. NAR
Genomics and Bioinformatics , 3 (3), lqab075.
https://doi.org/10.1093/nargab/lqab075
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M.
D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and
Efficient Methods for Phylogenetic Inference in the Genomic Era.Molecular Biology and Evolution , 37 (5), 1530–1534.
https://doi.org/10.1093/molbev/msaa015
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015).
IQ-TREE: a fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Molecular Biology and Evolution ,32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
Oliveros, C. H., Field, D. J., Ksepka, D. T., Barker, F. K., Aleixo, A.,
Andersen, M. J., Alström, P., Benz, B. W., Braun, E. L., Braun, M. J.,
Bravo, G. A., Brumfield, R. T., Chesser, R. T., Claramunt, S., Cracraft,
J., Cuervo, A. M., Derryberry, E. P., Glenn, T. C., Harvey, M. G.,
… Faircloth, B. C. (2019). Earth history and the passerine
superradiation. Proceedings of the National Academy of Sciences of
the United States of America , 116 (16), 7916–7925.
https://doi.org/10.1073/pnas.1813206116
Perkel, J. M. (2020). Why scientists are turning to Rust. Nature ,588 (7836), 185–186. https://doi.org/10.1038/d41586-020-03382-2
Román-Palacios, C. (2023). The ‘phruta’ R package and ‘salphycon’ shiny
app: increasing access, reproducibility, and transparency in
phylogenetic analyses. In bioRxiv (p. 2023.01.11.523621).
https://doi.org/10.1101/2023.01.11.523621
Steenwyk, J. L., & Rokas, A. (2019). Treehouse: a user-friendly
application to obtain subtrees from large phylogenies. BMC
Research Notes , 12 (1), 541.
https://doi.org/10.1186/s13104-019-4577-5
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., &
Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data
integration using BEAST 1.10. Virus Evolution , 4 (1),
vey016. https://doi.org/10.1093/ve/vey016
Yang, Z. (2015). The BPP program for species tree estimation and species
delimitation. Current Zoology , 61 (5), 854–865.
https://doi.org/10.1093/czoolo/61.5.854