Literature cited
Abrams, P. A., and H. Matsuda. 2004. Consequences of behavioral dynamics for the population dynamics of predator-prey systems with switching. Population Ecology 46:13–25.
Agha, R., A. Gross, M. Gerphagnon, T. Rohrlack, and J. Wolinska. 2018. Fitness and eco-physiological response of a chytrid fungal parasite infecting planktonic cyanobacteria to thermal and host genotype variation. Parasitology 145:1279–1286.
Agha, R., M. Saebelfeld, C. Manthey, T. Rohrlack, and J. Wolinska. 2016. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Reports 6:35039.
Banerji, A., A. B. Duncan, J. S. Griffin, S. Humphries, O. L. Petchey, and O. Kaltz. 2015. Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web. Journal of Animal Ecology 84:723–733.
Blanchard, J. L., R. Law, M. D. Castle, and S. Jennings. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theoretical Ecology 4:289–300.
Bogard, M. J., R. J. Vogt, N. M. Hayes, and P. R. Leavitt. 2020. Unabated Nitrogen Pollution Favors Growth of Toxic Cyanobacteria over Chlorophytes in Most Hypereutrophic Lakes. Environmental Science & Technology 54:3219–3227.
Buck, J. C., K. I. Scholz, J. R. Rohr, and A. R. Blaustein. 2015. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus. Oecologia 178:239–248.
Buck, J. C., L. Truong, and A. R. Blaustein. 2011. Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodiversity and Conservation 20:3549–3553.
Burson, A., M. Stomp, E. Greenwell, J. Grosse, and J. Huisman. 2018. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99:1108–1118.
Cattin, M.-F., L.-F. Bersier, C. Banašek-Richter, R. Baltensperger, and J.-P. Gabriel. 2004. Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839.
Davis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725.
Dhooge, A., W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet, and B. Sautois. 2006. MATCONT and CL MATCONT: Continuation toolboxes in matlab:100.
Drossel, B., P. G. Higgs, and A. J. Mckane. 2001. The Influence of Predator–Prey Population Dynamics on the Long-term Evolution of Food Web Structure. Journal of Theoretical Biology 208:91–107.
Frenken, T. H. M. 2018, April 18. Live and Let die : How climate change affects bottom-up and top-down factors regulating phytoplankton disease. Dissertation, Utrecht University. http://localhost/handle/1874/363352.
Frenken, T., T. Miki, M. Kagami, D. B. Van de Waal, E. Van Donk, T. Rohrlack, and A. S. Gsell. 2020. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology 101:e02900.
Gellner, G., and K. S. McCann. 2016. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications 7:11180.
Gerla, D. J., A. S. Gsell, B. W. Kooi, B. W. Ibelings, E. Van Donk, and W. M. Mooij. 2013. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts:Planktonic host-parasite dynamics . Freshwater Biology 58:538–551.
Gibert, J. P., and J. P. DeLong. 2017. Phenotypic variation explains food web structural patterns. Proceedings of the National Academy of Sciences 114:11187–11192.
Grossart, H.-P., S. Van den Wyngaert, M. Kagami, C. Wurzbacher, M. Cunliffe, and K. Rojas-Jimenez. 2019. Fungi in aquatic ecosystems. Nature Reviews Microbiology 17:339–354.
Gsell, A. S., L. N. de Senerpont Domis, K. J. Verhoeven, E. van Donk, and B. W. Ibelings. 2013. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. The ISME Journal 7:2057–2059.
Hobart, B. K., W. E. Moss, T. McDevitt-Galles, T. E. Stewart Merrill, and P. T. J. Johnson. 2021. It’s a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators. Journal of Animal Ecology n/a.
Holling, C. S. 1959. Some Characteristics of Simple Types of Predation and Parasitism1. The Canadian Entomologist 91:385–398.
Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, and P. M. Visser. 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16:471–483.
Ibelings, B. W., A. S. Gsell, W. M. Mooij, E. Van DONK, S. Van Den WYNGAERT, and L. N. De SENERPONT DOMIS. 2011. Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biology 56:754–766.
Johnson, P. T. J., A. Dobson, K. D. Lafferty, D. J. Marcogliese, J. Memmott, S. A. Orlofske, R. Poulin, and D. W. Thieltges. 2010. When parasites become prey: ecological and epidemiological significance of eating parasites:10.
Kagami, M., E. von Elert, B. W. Ibelings, A. de Bruin, and E. Van Donk. 2007. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proceedings of the Royal Society B: Biological Sciences 274:1561–1566.
Kagami, M., T. Miki, and G. Takimoto. 2014. Mycoloop: chytrids in aquatic food webs. Frontiers in Microbiology 5:166.
Kiørboe, T., E. Saiz, P. Tiselius, and K. H. Andersen. 2018. Adaptive feeding behavior and functional responses in zooplankton. Limnology and Oceanography 63:308–321.
Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. D. Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin, and D. W. Thieltges. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11:533–546.
Lafferty, K. D., A. P. Dobson, and A. M. Kuris. 2006. Parasites dominate food web links. Proceedings of the National Academy of Sciences 103:11211–11216.
Meunier, C. L., M. Boersma, K. H. Wiltshire, and A. M. Malzahn. 2016. Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos 125:50–58.
Michalska-Smith, M. J., E. L. Sander, M. Pascual, and S. Allesina. 2018. Understanding the role of parasites in food webs using the group model. Journal of Animal Ecology 87:790–800.
Miki, T., G. Takimoto, and M. Kagami. 2011. Roles of parasitic fungi in aquatic food webs: a theoretical approach. Freshwater Biology 56:1173–1183.
Mougi, A., and Y. Iwasa. 2010. Evolution towards oscillation or stability in a predator–prey system. Proceedings of the Royal Society B: Biological Sciences 277:3163–3171.
Ndlovu, M., and L. Combrink. 2015. Feeding preferences of Oxpeckers in Kruger National Park, South Africa : original research. Koedoe : African Protected Area Conservation and Science 57:1–6.
O’Gorman, E. J., U. Jacob, T. Jonsson, and M. C. Emmerson. 2010. Interaction strength, food web topology and the relative importance of species in food webs. Journal of Animal Ecology 79:682–692.
Prosnier, L., V. Médoc, and N. Loeuille. 2018. Parasitism effects on coexistence and stability within simple trophic modules. Journal of Theoretical Biology 458:68–77.
Rasconi, S., B. Grami, N. Niquil, M. Jobard, and T. Sime-Ngando. 2014. Parasitic chytrids sustain zooplankton growth during inedible algal bloom. Frontiers in Microbiology 5:229.
Rasconi, S., R. Ptacnik, S. Danner, S. Van den Wyngaert, T. Rohrlack, M. Pilecky, and M. J. Kainz. 2020. Parasitic Chytrids Upgrade and Convey Primary Produced Carbon During Inedible Algae Proliferation. Protist 171:125768.
Ray, J. L., J. Althammer, K. S. Skaar, P. Simonelli, A. Larsen, D. Stoecker, A. Sazhin, U. Z. Ijaz, C. Quince, J. C. Nejstgaard, M. Frischer, G. Pohnert, and C. Troedsson. 2016. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Molecular Ecology 25:5585–5602.
Rogawa, A., S. Ogata, and A. Mougi. 2018. Parasite transmission between trophic levels stabilizes predator–prey interaction. Scientific Reports 8:12246.
Rooney, N., K. McCann, G. Gellner, and J. C. Moore. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442:265–269.
Salmaso, N., and M. Tolotti. 2021. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia 848:251–284.
Sandhu, S. K., A. Yu. Morozov, A. Mitra, and K. Flynn. 2019. Exploring nonlinear functional responses of zooplankton grazers in dilution experiments via optimization techniques. Limnology and Oceanography 64:774–784.
Sommer, U., N. Aberle, K. Lengfellner, and A. Lewandowska. 2012. The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Marine Biology 159:2479–2490.
Stibor, H., O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, F. Hantzsche, A. Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer, M. Sandow, L. Sundt-Hansen, and Y. Olsen. 2004. Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecology Letters 7:321–328.
Sukhdeo, M. V. 2012. Where are the parasites in food webs? Parasites & Vectors 5:239.
Thingstad, T. F., and E. Sakshaug. 1990. Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology. Marine Ecology Progress Series 63:261–272.
Uszko, W., S. Diehl, N. Pitsch, K. Lengfellner, and T. Müller. 2015. When is a type III functional response stabilizing? Theory and practice of predicting plankton dynamics under enrichment. Ecology 96:3243–3256.
Visser, A., and Ø. Fiksen. 2013. Optimal foraging in marine ecosystem models: selectivity, profitability and switching. Marine Ecology Progress Series 473:91–101.
Wollrab, S., and S. Diehl. 2015. Bottom-up responses of the lower oceanic food web are sensitive to copepod mortality and feeding behavior. Limnology and Oceanography 60:641–656.
Wollrab, S., P. Pondaven, S. Behl, B. Beker, and H. Stibor. 2020. Differences in size distribution of marine phytoplankton in presence versus absence of jellyfish support theoretical predictions on top-down control patterns along alternative energy pathways. Marine Biology 167:9.
Yamamichi, M., T. Klauschies, B. E. Miner, and E. van Velzen. 2019. Modelling inducible defences in predator–prey interactions: assumptions and dynamical consequences of three distinct approaches. Ecology Letters 22:390–404.