References
Agren R, Otero JM, Nielsen J. 2013. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J. Ind. Microbiol. Biotechnol. 40 :735–747.
Akinsemolu AA. 2018. The role of microorganisms in achieving the sustainable development goals. J. Clean. Prod.182 :139–155.
Arora P, Vats A, Saxena P, Mohanty D, Gokhale RS. 2005. Promiscuous Fatty Acyl CoA Ligases Produce Acyl-CoA and Acyl-SNAC Precursors for Polyketide Biosynthesis. J. Am. Chem. Soc.127 :9388–9389. https://doi.org/10.1021/ja052991s.
Bao L, Li JJ, Jia C, Li M, Lu X. 2016. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol. Biofuels9 :1–14.
Barrick D, Villanueba K, Childs J, Kalil R, Schneider TD, Lawrence CE, Gold L, Stormo GD. 1994. Quantitative analysis of ribosome binding sites in E.coli. Nucleic Acids Res. 22 :1287–1295.
Blitzblau HG, Consiglio AL, Teixeira P, Crabtree D V., Chen S, Konzock O, Chifamba G, Su A, Kamineni A, MacEwen K, Hamilton M, Tsakraklides V, Nielsen J, Siewers V, Shaw AJ. 2021. Production of 10-methyl branched fatty acids in yeast. Biotechnol. Biofuels 14 :1–17.
Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F. 2016. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids. ACS Synth. Biol.5 :200–206.
Cho H, Cronan JE. 1995. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J. Biol. Chem.
Choi YJ, Lee SY. 2013. Microbial production of short-chain alkanes.Nature 502 :571–4. http://www.ncbi.nlm.nih.gov/pubmed/24077097.
Clomburg JM, Blankschien MD, Vick JE, Chou A, Kim S, Gonzalez R. 2015. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.Metab. Eng. 28 :202–212.
Cronan JE, Birge CH, Vagelos PR. 1969. Evidence for two genes specifically involved in unsaturated fatty acid biosynthesis in Escherichia coli. J. Bacteriol.
Feng Y, Cronan JE. 2009. Escherichia coli unsaturated fatty acid synthesis. Complex trancription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J. Biol. Chem. 284 :29526–35.
Goh EB, Baidoo EEK, Keasling JD, Beller HR. 2012. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 78 :70–80.
Greenhalgh JC, Fahlberg SA, Pfleger BF, Romero PA. 2021. Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nat. Commun. 12 :5825. https://doi.org/10.1038/s41467-021-25831-w.
Grisewood MJJ, Hernández-Lozada NJJ, Thoden JBB, Gifford NPP, Mendez-Perez D, Schoenberger HAA, Allan MFF, Floy MEE, Lai R-YY, Holden HMM, Pfleger BFF, Maranas CDD. 2017. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. ACS Catal. 7 :3837–3849.
Haushalter RW, Kim W, Chavkin TA, The L, Garber ME, Nhan M, Adams PD, Petzold CJ, Katz L, Keasling JD. 2014. Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metab. Eng. 26 :111–118.
Hernández Lozada NJ, Simmons TR, Xu K, Jindra MA, Pfleger BF. 2020. Production of 1-octanol in Escherichia coli by a high flux thioesterase route. Metab. Eng. 61 :352–359.
Hernández Lozada NJ, Lai R-Y, Simmons TR, Thomas KA, Chowdhury R, Maranas CD, Pfleger BF. 2018. Highly Active C8-Acyl-ACP Thioesterase Variant Isolated by a Synthetic Selection Strategy. ACS Synth. Biol. 7 :2205–2215.
Kalim Akhtara M, Turner NJ, Jones PR. 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. U. S. A.110 :87–92.
Kim S, Clomburg JM, Gonzalez R. 2015. Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42 :465–475.
Kumar R, Kumar P. 2017. Future microbial applications for bioenergy production: A perspective. Front. Microbiol. 8 :1–4.
Li Z, Nimtz M, Rinas U. 2014. The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb. Cell Fact.13 :1–17.
Lian J, Zhao H. 2015. Reversal of the β-oxidation cycle in saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 4 :332–341.
Lozano Terol G, Gallego-Jara J, Sola Martínez RA, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. 2021. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front. Microbiol. 12 :1–12.
Machado D, Herrgård MJ. 2015. Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab. Eng. Commun. 2 :85–92.
Mains K, Peoples J, Fox JM. 2022. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab. Eng. 69 :209–220.
Marella ER, Holkenbrink C, Siewers V, Borodina I. 2018. Engineering microbial fatty acid metabolism for biofuels and biochemicals.Curr. Opin. Biotechnol. 50 :39–46.
Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA. 2019. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol.
Monk JM, Koza A, Campodonico M, Machado D, Seoane JM, Palsson BO, Herrgård MJ, Feist AM. 2016. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst. 3 :238–251.
Morris MD. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics 33 :161–174.
Pianosi F, Sarrazin F, Wagener T. 2015. A Matlab toolbox for Global Sensitivity Analysis. Environ. Model. Softw. 70 :80–85.
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. 2015. Survival guide: Escherichia coli in the stationary phase. Acta Naturae7 :22–33.
Ravi S, Gunawan R. 2021. ΔFBA-Predicting metabolic flux alterations using genome-scale metabolic models and differential transcriptomic data. PLoS Comput. Biol. 17 :1–18.
van Rosmalen RP, Smith RW, Martins dos Santos VAP, Fleck C, Suarez-Diez M. 2021. Model reduction of genome-scale metabolic models as a basis for targeted kinetic models. Metab. Eng. 64 :74–84.
Rui Z, Harris NC, Zhu X, Huang W, Zhang W. 2015. Discovery of a Family of Desaturase-Like Enzymes for 1-Alkene Biosynthesis. ACS Catal.5 :7091–7094.
Ruppe A, Fox JM. 2018. Analysis of Interdependent Kinetic Controls of Fatty Acid Synthases. ACS Catal. 8 :11722–11734.
Ruppe A, Mains K, Fox JM. 2020. A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proc. Natl. Acad. Sci. :202013924.
Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27 :946–950.
Sarria S, Bartholow TG, Verga A, Burkart MD, Peralta-Yahya P. 2018. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production. ACS Synth. Biol. 7 :1179–1187.
Sarria S, Kruyer NS, Peralta-Yahya P. 2017. Microbial synthesis of medium-chain chemicals from renewables. Nat. Biotechnol.35 :1158–1166.
Sharma A, Yazdani SS. 2021. Microbial engineering to produce fatty alcohols and alkanes. J. Ind. Microbiol. Biotechnol. 48 .
Sherkhanov S, Korman TP, Clarke SG, Bowie JU. 2016. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.Sci. Rep. 6 :1–10.
Silbert DF, Vagelos PR. 1967. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc. Natl. Acad. Sci. U. S. A. 58 :1579–1586.
Song X, Yu H, Zhu K. 2016. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl. Microbiol. Biotechnol.100 :757–767.
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. 2013. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One 8 .
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463 :559–562. http://dx.doi.org/10.1038/nature08721.
Tan Z, Yoon JM, Chowdhury A, Burdick K, Jarboe LR, Maranas CD, Shanks J V. 2018. Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. Biotechnol. Biofuels 11 :1–15.
Teo WS, Ling H, Yu AQ, Chang MW. 2015. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol. Biofuels8 :1–9.
White SW, Zheng J, Zhang Y-M, Rock, Rock CO, Rock. 2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem.74 :791–831.
Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, Koffas MAG. 2013. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4 :1408–1409.
Yan Q, Pfleger BF. 2019. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng.58 :35–46.
Yan Q, Simmons TR, Cordell WT, Hernández Lozada NJ, Breckner CJ, Chen X, Jindra MA, Pfleger BF. 2020. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab. Eng. 61 :335–343.
Yoshikawa K, Toya Y, Shimizu H. 2017. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst. Eng. 40 :791–796.
Zhang C, Hua Q. 2016. Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol.6 :1–8.
Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL. 2018. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555 :683–687.