References
Agren R, Otero JM, Nielsen J. 2013. Genome-scale modeling enables
metabolic engineering of Saccharomyces cerevisiae for succinic acid
production. J. Ind. Microbiol. Biotechnol. 40 :735–747.
Akinsemolu AA. 2018. The role of microorganisms in achieving the
sustainable development goals. J. Clean. Prod.182 :139–155.
Arora P, Vats A, Saxena P, Mohanty D, Gokhale RS. 2005. Promiscuous
Fatty Acyl CoA Ligases Produce Acyl-CoA and Acyl-SNAC Precursors for
Polyketide Biosynthesis. J. Am. Chem. Soc.127 :9388–9389. https://doi.org/10.1021/ja052991s.
Bao L, Li JJ, Jia C, Li M, Lu X. 2016. Structure-oriented substrate
specificity engineering of aldehyde-deformylating oxygenase towards
aldehydes carbon chain length. Biotechnol. Biofuels9 :1–14.
Barrick D, Villanueba K, Childs J, Kalil R, Schneider TD, Lawrence CE,
Gold L, Stormo GD. 1994. Quantitative analysis of ribosome binding sites
in E.coli. Nucleic Acids Res. 22 :1287–1295.
Blitzblau HG, Consiglio AL, Teixeira P, Crabtree D V., Chen S, Konzock
O, Chifamba G, Su A, Kamineni A, MacEwen K, Hamilton M, Tsakraklides V,
Nielsen J, Siewers V, Shaw AJ. 2021. Production of 10-methyl branched
fatty acids in yeast. Biotechnol. Biofuels 14 :1–17.
Bowen CH, Bonin J, Kogler A, Barba-Ostria C, Zhang F. 2016. Engineering
Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy
Fatty Acids and α,ω-Dicarboxylic Acids. ACS Synth. Biol.5 :200–206.
Cho H, Cronan JE. 1995. Defective export of a periplasmic enzyme
disrupts regulation of fatty acid synthesis. J. Biol. Chem.
Choi YJ, Lee SY. 2013. Microbial production of short-chain alkanes.Nature 502 :571–4.
http://www.ncbi.nlm.nih.gov/pubmed/24077097.
Clomburg JM, Blankschien MD, Vick JE, Chou A, Kim S, Gonzalez R. 2015.
Integrated engineering of β-oxidation reversal and ω-oxidation pathways
for the synthesis of medium chain ω-functionalized carboxylic acids.Metab. Eng. 28 :202–212.
Cronan JE, Birge CH, Vagelos PR. 1969. Evidence for two genes
specifically involved in unsaturated fatty acid biosynthesis in
Escherichia coli. J. Bacteriol.
Feng Y, Cronan JE. 2009. Escherichia coli unsaturated fatty acid
synthesis. Complex trancription of the fabA gene and in vivo
identification of the essential reaction catalyzed by FabB. J.
Biol. Chem. 284 :29526–35.
Goh EB, Baidoo EEK, Keasling JD, Beller HR. 2012. Engineering of
bacterial methyl ketone synthesis for biofuels. Appl. Environ.
Microbiol. 78 :70–80.
Greenhalgh JC, Fahlberg SA, Pfleger BF, Romero PA. 2021. Machine
learning-guided acyl-ACP reductase engineering for improved in vivo
fatty alcohol production. Nat. Commun. 12 :5825.
https://doi.org/10.1038/s41467-021-25831-w.
Grisewood MJJ, Hernández-Lozada NJJ, Thoden JBB, Gifford NPP,
Mendez-Perez D, Schoenberger HAA, Allan MFF, Floy MEE, Lai R-YY, Holden
HMM, Pfleger BFF, Maranas CDD. 2017. Computational Redesign of Acyl-ACP
Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty
Acids. ACS Catal. 7 :3837–3849.
Haushalter RW, Kim W, Chavkin TA, The L, Garber ME, Nhan M, Adams PD,
Petzold CJ, Katz L, Keasling JD. 2014. Production of anteiso-branched
fatty acids in Escherichia coli; next generation biofuels with improved
cold-flow properties. Metab. Eng. 26 :111–118.
Hernández Lozada NJ, Simmons TR, Xu K, Jindra MA, Pfleger BF. 2020.
Production of 1-octanol in Escherichia coli by a high flux thioesterase
route. Metab. Eng. 61 :352–359.
Hernández Lozada NJ, Lai R-Y, Simmons TR, Thomas KA, Chowdhury R,
Maranas CD, Pfleger BF. 2018. Highly Active C8-Acyl-ACP Thioesterase
Variant Isolated by a Synthetic Selection Strategy. ACS Synth.
Biol. 7 :2205–2215.
Kalim Akhtara M, Turner NJ, Jones PR. 2013. Carboxylic acid reductase is
a versatile enzyme for the conversion of fatty acids into fuels and
chemical commodities. Proc. Natl. Acad. Sci. U. S. A.110 :87–92.
Kim S, Clomburg JM, Gonzalez R. 2015. Synthesis of medium-chain length
(C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia
coli. J. Ind. Microbiol. Biotechnol. 42 :465–475.
Kumar R, Kumar P. 2017. Future microbial applications for bioenergy
production: A perspective. Front. Microbiol. 8 :1–4.
Li Z, Nimtz M, Rinas U. 2014. The metabolic potential of Escherichia
coli BL21 in defined and rich medium. Microb. Cell Fact.13 :1–17.
Lian J, Zhao H. 2015. Reversal of the β-oxidation cycle in saccharomyces
cerevisiae for production of fuels and chemicals. ACS Synth.
Biol. 4 :332–341.
Lozano Terol G, Gallego-Jara J, Sola Martínez RA, Martínez Vivancos A,
Cánovas Díaz M, de Diego Puente T. 2021. Impact of the Expression System
on Recombinant Protein Production in Escherichia coli BL21. Front.
Microbiol. 12 :1–12.
Machado D, Herrgård MJ. 2015. Co-evolution of strain design methods
based on flux balance and elementary mode analysis. Metab. Eng.
Commun. 2 :85–92.
Mains K, Peoples J, Fox JM. 2022. Kinetically guided, ratiometric tuning
of fatty acid biosynthesis. Metab. Eng. 69 :209–220.
Marella ER, Holkenbrink C, Siewers V, Borodina I. 2018. Engineering
microbial fatty acid metabolism for biofuels and biochemicals.Curr. Opin. Biotechnol. 50 :39–46.
Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA. 2019.
Escherichia coli “Marionette” strains with 12 highly optimized
small-molecule sensors. Nat. Chem. Biol.
Monk JM, Koza A, Campodonico M, Machado D, Seoane JM, Palsson BO,
Herrgård MJ, Feist AM. 2016. Multi-omics quantification of species
variation of Escherichia coli links molecular features with strain
phenotypes. Cell Syst. 3 :238–251.
Morris MD. 1991. Factorial sampling plans for preliminary computational
experiments. Technometrics 33 :161–174.
Pianosi F, Sarrazin F, Wagener T. 2015. A Matlab toolbox for Global
Sensitivity Analysis. Environ. Model. Softw. 70 :80–85.
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. 2015. Survival
guide: Escherichia coli in the stationary phase. Acta Naturae7 :22–33.
Ravi S, Gunawan R. 2021. ΔFBA-Predicting metabolic flux alterations
using genome-scale metabolic models and differential transcriptomic
data. PLoS Comput. Biol. 17 :1–18.
van Rosmalen RP, Smith RW, Martins dos Santos VAP, Fleck C, Suarez-Diez
M. 2021. Model reduction of genome-scale metabolic models as a basis for
targeted kinetic models. Metab. Eng. 64 :74–84.
Rui Z, Harris NC, Zhu X, Huang W, Zhang W. 2015. Discovery of a Family
of Desaturase-Like Enzymes for 1-Alkene Biosynthesis. ACS Catal.5 :7091–7094.
Ruppe A, Fox JM. 2018. Analysis of Interdependent Kinetic Controls of
Fatty Acid Synthases. ACS Catal. 8 :11722–11734.
Ruppe A, Mains K, Fox JM. 2020. A kinetic rationale for functional
redundancy in fatty acid biosynthesis. Proc. Natl. Acad.
Sci. :202013924.
Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic
ribosome binding sites to control protein expression. Nat.
Biotechnol. 27 :946–950.
Sarria S, Bartholow TG, Verga A, Burkart MD, Peralta-Yahya P. 2018.
Matching Protein Interfaces for Improved Medium-Chain Fatty Acid
Production. ACS Synth. Biol. 7 :1179–1187.
Sarria S, Kruyer NS, Peralta-Yahya P. 2017. Microbial synthesis of
medium-chain chemicals from renewables. Nat. Biotechnol.35 :1158–1166.
Sharma A, Yazdani SS. 2021. Microbial engineering to produce fatty
alcohols and alkanes. J. Ind. Microbiol. Biotechnol. 48 .
Sherkhanov S, Korman TP, Clarke SG, Bowie JU. 2016. Production of FAME
biodiesel in E. coli by direct methylation with an insect enzyme.Sci. Rep. 6 :1–10.
Silbert DF, Vagelos PR. 1967. Fatty acid mutant of E. coli lacking a
beta-hydroxydecanoyl thioester dehydrase. Proc. Natl. Acad. Sci.
U. S. A. 58 :1579–1586.
Song X, Yu H, Zhu K. 2016. Improving alkane synthesis in Escherichia
coli via metabolic engineering. Appl. Microbiol. Biotechnol.100 :757–767.
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W.
2013. Systematic construction of kinetic models from genome-scale
metabolic networks. PLoS One 8 .
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre
SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels
and chemicals from plant biomass. Nature 463 :559–562.
http://dx.doi.org/10.1038/nature08721.
Tan Z, Yoon JM, Chowdhury A, Burdick K, Jarboe LR, Maranas CD, Shanks J
V. 2018. Engineering of E. coli inherent fatty acid biosynthesis
capacity to increase octanoic acid production. Biotechnol.
Biofuels 11 :1–15.
Teo WS, Ling H, Yu AQ, Chang MW. 2015. Metabolic engineering of
Saccharomyces cerevisiae for production of fatty acid short- and
branched-chain alkyl esters biodiesel. Biotechnol. Biofuels8 :1–9.
White SW, Zheng J, Zhang Y-M, Rock, Rock CO, Rock. 2005. The structural
biology of type II fatty acid biosynthesis. Annu. Rev. Biochem.74 :791–831.
Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, Koffas MAG. 2013.
Modular optimization of multi-gene pathways for fatty acids production
in E. coli. Nat. Commun. 4 :1408–1409.
Yan Q, Pfleger BF. 2019. Revisiting metabolic engineering strategies for
microbial synthesis of oleochemicals. Metab. Eng.58 :35–46.
Yan Q, Simmons TR, Cordell WT, Hernández Lozada NJ, Breckner CJ, Chen X,
Jindra MA, Pfleger BF. 2020. Metabolic engineering of β-oxidation to
leverage thioesterases for production of 2-heptanone, 2-nonanone and
2-undecanone. Metab. Eng. 61 :335–343.
Yoshikawa K, Toya Y, Shimizu H. 2017. Metabolic engineering of
Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux
balance analysis. Bioprocess Biosyst. Eng. 40 :791–796.
Zhang C, Hua Q. 2016. Applications of genome-scale metabolic models in
biotechnology and systems medicine. Front. Physiol.6 :1–8.
Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL.
2018. Optogenetic regulation of engineered cellular metabolism for
microbial chemical production. Nature 555 :683–687.