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ABSTRACT. This article is devoted to the study of the existence of an exponential attractor for a
family of problems, in which diffusion d blows up in localized regions inside the domain

u} — div(dy(z)(|Vur PO 72 4 ) Vud) + [ P@ 20 = Bud), inQ

ur =0, on 0

u?(0) = uj € L*(Q),
and their limit problem via the [-trajectory method.
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1. INTRODUCTION

The existence of exponential attractors is an important feature for nonlinear systems of differ-
ential equations, thanks to the exponential rate of exponential attraction, attractors are more robust
under perturbations than the global attractor. Several authors have studied the existence of an
exponential attractor, see [6, [7,|13]]. The following definition was proposed in [14].

Let (M, dy;) be a metric space. A subset £ C M in an exponential attractor for a semigroup
{S(t); t = 0} if € # 0 is compact, has finite fractal dimension dim¢(E) < oo, is semi-invariant,
that is, S(t)€ C &€ for allt > 0, and for all limit subset D C M there exist constants cy,co > 0
such that

distg(S(t)D, &) < cre™, forall t > 0.
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log NM(A
Here dimg(A) = lim sup Og—‘sl()
es0 log(2)

M with centers in A necessary to cover the subset A C M.

Unlike the global attractor, the exponential attractor has no unity, and, therefore, the algorithm
used for its construction assumes an important role for its understanding. The existence of the
exponential attractor can guarantee through the squeezing property, see [14], or through softness
properties, see [28]].

This paper concerns the existence of the exponential attractor for a family of problems domi-
nated by a perturbation of p(z)-Laplacian with great localized diffusion and its limit problem,
which will be described next.

Let 2 C R” be an open, bounded, connected and smooth subset, with n > 1. Consider the
following family of problems

, and NM(A) denotes the minimum number of e-balls in space

up — div(dy(z) (Ve P72 + ) Vud) + [ P@ 2> = B(u), inQ
(1.1) w =0, on 0f)
ur0) = u) € L3(Q),

for A € (0, 1], where p € C(2) satisfies
2<p :=inf essp < p(x) <sup essp:=p" < +oo,

B : L*(Q) — L*() is globally Lipschitz and n > 0.
Let Qo be an open subset smooth of 2 with Qq C € and ) = 'QQOJ where m is a positive

integer and (), ; are smooth subdomains of () satisfying ﬁo,z‘ N ﬁojj = (), for © # j. Define
0 =0Q \ﬁg, Fo; =00, and I'y = .QFOJ as the boundaries of {1 ; and (2, respectively. Notice

that an =Ty F().
In addition, the diffusion coefficients d) : 2 C R™ — (0, co) are bounded and smooth functions
in €2, satisfying

0<mg< d)\(ZE) < M)\,

forall x € 2and 0 < A < 1. We also assume that the diffusion is large in €25 as A — 0, or more
precisely,

A—0 [ do(z), uniformly on y;
(1.2) dx(2) { 0o,  uniformly on compact subsets of (2,

where d; : 2; — (0, 00) is a smooth function with 0 < my < do(z) < M, forall z € Q.

If, in a reaction-diffusion process the diffusion coefficient behaves as expressed in (1.2), we
expect that the solutions of will become approximately constant on {2y. For this reason,
suppose that u* converges to u as A — 0, in some sense, and that u takes, on {2, a time dependent
spatially constant value, which we will denote by ugq, ().

In this context we will obtain the equation that describes the limit problem. Notice that, since
the limit function v is in W'?(®)(Q)) and its constant value in €, ugq, (t) cannot be arbitrary. Also,
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in the boundary I'g = 0€2y we must have v, = uq,(?). In 2;,we have
(1.3) u} — div(dy(z)(|Ver P72 4 ) Vat) + [ PO "2 = Blu?).
From properties of convergence of the function d(x) in €21, when A\ — 0, we get
— div(do(x)(|VuP™ =2 4+ 7)Vu) + [u|P® "2y = B(u), for u € W (Q).

Integrating (I.3)) on €, from Gauss’s Divergence Theorem, it follows that

/ut dx—l—/ NE )(\VuA]px) 4+ ) —dx—l—/]uﬂpx) 2 Adac—/l%’(u’\)dyc,

Qo To Qo
where 77 denotes the unit inward normal to ) in the surface integral. Taking the limit as A\ — 0,
we get the following ordinary differential equation

y 1 p—2 u p—2 _
i, (0) + 77 F/do<x><|w| Fmgadet [ a0 us,t)dr | = Blus,(o)

With these considerations we can write the limiting problem in the following way

(1.4)
— div(do(x)(|Vu[P® =2 + n)Vu) + [ulP®~2u = B(u), in

Ulgy , "= U ;s in

1 ou
* |Qo | /do<x)(|vu|p(z)_2 + 77)%» dz + /|u90,i|p(x)_2u90,i dz | = B<uQO,i)
! FO,i QO,i
u =0, on 0f)
L u(0) = up.

Several authors have studied the asymptotic behavior of problems with large diffusion located in
some regions of the domain. In physics, this situation can be found in composite materials where
the heat distribution of the material differ from one part to another. In [2] the authors obtained
the upper semicontinuity of the family of attractors associated with nonlinear reaction-diffusion
equations ((I.1)) with principal part governed by a degenerate p-Laplacian, where p is constant and
n=0.

Another work that assumes similar hypotheses about the diffusion is [5], which the authors
analyze perturbations in elliptic equations, subjected to various boundary conditions

—div(de(z)Vu) + (A + Vi(x))u = f(u), inQ

1.5 ou’

(15) a;;e (x)u = g°, on 0}

where 0 < € < €, 2 C R" is a bounded regular open connected set. Here 3= denotes the
conormal derivative relative to the diffusion operator —div(d.(z)Vu), i. e., aaﬁ = d (x)(Vu, ).

Also, A € R and the potencials V(z) and b.(z) are given functions on 2 and 02, respectively.
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The diffusion is going to infinity in localized regions inside the domain and therefore solutions
undergo a localized spatial homogenization. The limiting elliptic operators is analyzed as well as
convegence of solutions, eigenvalues, and eigenfuctions.

The existence of an exponential attractor for a dynamic system provides a good understanding
of the asymptotic behavior of the solutions, because of the robust behavior of the exponential
attractor. Initially, in this work, we tried to guarantee the existence of an exponential attractor for
the problem as presented in [2], with p constant and 1 = 0. Successful results were obtained,
even considering the general case where p is a function, by adding the term n > 0 in the main part
of the problem as (I.1)). In physical terms, this change could indicate, for example, a viscosity of
the material as mentioned in [6]].

To guarantee the existence of a family of exponential attractors, {&,}aco,1), associated with
problems (L.I)- (I.4), we will make an adaptation of the method known as the (—trajectories
method, suggested by Mdlek and Prazdk in [1]]. In this work the authors proved the existence of a
finite dimensional fractal global attractor and the existence of an exponential attractor, through the
{—trajectories method, for the problems of form

(1.6) {U’(t) = F(u(t)), t>0,in X,

u(0) = uo,

where X is an infinite dimensional Banach space, F' : X — X is a nonlinear operator and uy € X.

Let ¢ > 0 be a constant. Briefly, the /—trajectories method comes from the observation that there
is an equivalent dynamic system, defined in a space of trajectories with amplitude ¢ > 0, in which
we can obtain conclusions about asymptotic behavior more easily and transfer these conclusions,
through an application with good properties, to the original dynamical system defined in the phase
space.

References [6] and [[11] use the {—trajectories method to guarantee the existence of the expo-
nential attractor. In [6], the author studies the generalized logistic equation

(1.7) uy — div(vVu + | VulP2Vau) = ku(1 — /T u(z,t — s)du(s)),
0

in Q2% (0,00) C R*x (0, 00), where the delay is captured by the convolution time with non-negative
i Borel measure, with £([0, 7]) = 1, and constants v > 0, z > 0 and p > 2, demonstrating the
existence of the exponential attractor, once proven that the solutions are asymptotically bounded.
Therefore, like in problems (I.I))-(1.4)), considering p(z) constant equal to p, in (1.7), the diffusion
is in the Laplacian plus the p-Laplacian.

In [11], the authors used the ¢—trajectories method to build an exponential attractor for the
dynamic system associated with the equation

ur — div(a(z,u, Vu)) + f(u) = g(z), (z,t) € Q x (0,400)
u(-,t)’ag =0, t e (0, +OO)
U(QZ',O) = Uo(ﬂf), S Qa

where a: Q x R! x R — R" satify some hypothesis, among them

(1.8) la(z,u, Vu) — a(z,v, Vv)|ge < Bo|Vu— Vo|ge + B1|u — v].
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A typical example, mentioned in [11], is
w — div((|Vul + )7 +n)Vu) + Julfu — [ul"u = g(x),

where p €]1,2[,e > 0,¢ >r > 0andn > 0.
Property (1.8)), essential in [L1]], is not satisfied for

a(z,u,Vu) = al(gv)(]Vu]p(m)*2 +n)Vu,
since p(z) > 2, therefore Lemma 2.2, in [27], allows us to estimate
|| Vu[P@ =27y, — |Vo[P@ 2Ty

in function of |Vu — Vu| and |Vu| + |Vv|, and still use the /—trajectories method.

In the case of 7 = 0, we did not obtain conclusions about the global attractor fractal dimension
A, for each A € (0,1]. In [21]], for example, the authors concluded that the global attractor in
L?(Q), associated with problems of the form

uy — div(|VulP®=2Vu) + f(z,u) =g, in QxR
(1.9) u =0, in 00 x R*
u(z,0) =0, in €,

where g,uy € L*(Q), p € C(Q) with 2 < p(z) < oo, for all z € Q, and f satisfying some
hypothesis; possesses infinite fractal dimension. Now, in [24], supposing in (I.9), p(z) constant
equal to p and f(z,u) = f(u), the authors showed that the global attractor associated with (I.9)
admits a finite fractal dimension in L*((2), where ¢ is the conjugate exponent of p and J €
[0, +00).

This paper is organized as follows. In Section 2, we define the operators Ay and Ay, from the
main part of the equations, we also show some properties and we present the results of strong
solution to (L.I)) and (I.4). In Section 3, we verify some estimates for the solutions, seeking to
the existence of a compact set positively invariant for the dynamics in phase space associated with
(L.1) and (T.4), as well as, for the equivalent dynamics defined in the space of the {—trajectories.

In Section 4 we present the dynamical of 1—trajectories associated with (I.1) and (1.4) and
guarantee the finite fractal dimension of global attractors in Lemma [4.3] Finally, we prove the
main result of this article, Theorem which guarantee the existence of an exponential attractor

for the family of problems(l1.1)-(1.4).

2. EXISTENCE OF SOLUTIONS

In this section we present the operators associated with our problems and establish some of their
properties. In addition we guarantee the existence of a unique solution for (I.1))-(1.4).
We will consider the following spaces and notations.

V=W Q) V= Wé’(féx)(Q) = {u € Wy (Q) : wis constant in o},
H = L*(Q), Ho := L, () := {u € L*() : uis constant in Qg}.
The space V; is equipped with the norm in V'

[ollv = vl o @) + 1Vl oo ()
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where L7")(Q) = {v : Q@ — R; v is measurable and [, |v(z)[P™®) dz < oo}

Note that V" and V;, are reﬂexwe Banach spaces, V' dense in Hilbert space H and Vj dense in H,,.
Moreover V' << H < V' which implies that Vy —— Hy — Vj.

We denote by p,.)(v), or simply for p(v), [, |v(z)[P®) dz, and we have

. v
[Vl Lo (@) = [V]lp@) = inf {)\ >0:p (X) < 1} :

Next, we present a result that makes many estimates involving spaces LP(*)(2) more flexible, for
more details check [26]].

Proposition 2.1. Let u € LP®)(Q).
. —+
@ If Nullpwy = L so [lully,) < plu) < llully,.
<mmwm<wam§mw@w%
From this Proposition it is possible to obtain the following estimates for v € LP(*)((2),
e a
2.1 min{p(v)7~, p(0)7* } < olly) < max{p(v)i~, p(v)7 }.
and
. + - +

2.2) min{[|v[[} ), [Vl } < pp(v) < max{|jvlly . [vllF,}-

For completeness we enunciate the well-known Aubin-Lions Lemma. For more details see [12].

Lemma 2.1. Let p; € (1,00] and py € [1,00). Let X be a Banach space and Y, Z separable and
reflexive Banach spaces in such a way that Y —<— X — Z. So, for all T € (0, c0),

{ue LP(0,T;Y);u' € LP(0,T; Z)} —— LP'(0,T; X).

For A\ € (0, 1] we consider

D(Ay) = {u € V : —div(dy(z)(|Vu[t®@ =2 4+ 1)Vu) € L*(Q)}
and for u € D(A,),

Ax(u) = =div(dy(x)(|VulPD =2 4 ) Vu) + |up@ 2

If\=0,
D(A,) = {u € Vg : —=div(dy(x)(|VulP® 2 +n)Vu) € L3(Q)}

and for u € D(Ay),

Ao(u) = (—div(do(2)(|Vul"™ "2 + ) V) + [ul™?u)xq,

ou
£ g | Juewur s e nGars i, b, ar) va,

To Qo,i

where Y g is the characteristic function of the set E.
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We denote by (-, -) the inner product in H and by (-,-)y,’y, the duality between V} and V},
A € [0, 1], where V), =V, for A € (0, 1].

The next results deal with some important properties of operators Ay, A € [0, 1].
Lemma 2.2. Forall A € |0, 1], we have

min{my, 1}H "
Vo

(Ayu,u)yry, = opt if [|ullv, <1,
AU W)VIVN = mln{m(]’ 1} )
oot ulll, . if [lullv, > 1

Proof. We will demonstrate case A = 0, case A € (0, 1] can be similarly demonstrated. Let u € Vj
be arbitrary, by the Divergence Theorem, we have

(2.3) <A0u,u)v Yo /d(]( )| VulP@ dx—i—/do( 0| Vul? dx+/|u\p(’”

Ql Ql
So,

(2.4) <A0“7U>VO’,VO > m0/|Vu\p($) dx + /|u\p(‘”) dxr > min{mg, 1}(p(|Vul|) + p(u)).

Suppose that [|u|y;, < 1, so necessarily ||ullp) < 1 and [|Vul|p.) < 1. By Proposition 2.1}

@35 olu) + p(1Vul) > [l + 1Vully > ool + 1Vl )" = sl
Hence, from (2.4), it follows that

) 1 + .
(2.6) (Aou, u>V0’,Vo > min{my, 1}2]7Hu\|§’,0, if ||ullv, <1

When [Jul|v, = ||[u|lp@) + [[Vullpe) = 1, we shall analyze four possibilities.
() If ||ul|pz) < 1and ||Vul|pe) < 1. It follows from (2.5) that

p(u) + p(|Vul) = 2p+ lullt;
(ii) If [|u||p) < 1and || Vu||ye) > 1. From Proposition 2.1} we conclude that

+ —
p(w) + p(IVul) = (ullyq + 1Vl
_ 1 _
2 IVullyey = 5= @IVl ) > 5o llull,
(iii) If ||u||p@) = 1 and ||Vulym) < 1. Following the same arguments as case (ii), we have

p(u) + p(IVul) > lullf ) > 2p+ lullv;
(iv) If ||u|lp) = 1 and | Vul|,e) > 1. From Proposmonwe have

1 - 1
5= ullpe) + 1 Vullp@)” = 5 llully

p(w) +p(IVul) = ullye) + IVulle) > 5
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Therefore, from (2.4)), it follows that
. 1 - .
(Aow, w)yy v, = mingmo, Loz flully, i lufly, > 1.

Together with we conclude the demonstration. O

Theorem 2.1. The operators Ay : D(Ay) CV — V', A € (0,1] and Ay : D(Ay) C Vo — V{ are
monotone, hemicontinuous and coercive.

Proof. Let u,v € Vj, it is possible to conclude, using the Divergence Theorem and the Tartar
inequality, that

(Agu—Agv, u — U>V0,7V0

93—p(z)
> mo/—yV(u )P d 4 mon/]V(u — )P dr + /
Q

23—p(z)

p(x)

lu — v|P® dz

p(x)

Ql Ql
23—p+ ) 23—p+
p(IV(u = v)[) + mon|[V(u — v)[|5, + p—+f0(u —v).

= My o
Then, Ay is a monotone operator. Besides, let w € V{; and 0 < ¢ < 1 be arbitrary, we have

[(Ao(u + tv) — Ag(u), w>vo’,vo‘

< ‘/do(a:)[(w(u + tv)|p(9”)*2 +n)V(u+tv) — (|Vu|p(x)72 +n)Vu]Vw dx
951

+ ‘/(|u + to[P@D 72 (4 + tv) — |uP@P2u)w dr|.
Q

From the Dominated Convergence Theorem, we have the hemicontinuity of A,. Finally, the coer-
civity is obtained from Lemmal[2.2] The case A € (0, 1] can be demonstrated analogously. 0J

It follows from the Example 2.3.7, p.26 in [§8] that the operators Ay, A € [0, 1] are monotone
maximals.
We define the sets

DAY :={veV:AweH}, for \e(0,1],
D(AG") = {v € Vo : Agv € Ho},
and consider the operators AY : D(AY) C H — H given by
A(u) = Ayu, Vue D(AY), for A€ (0,1] and
Alo(u) = Agu,  Yu € D(AJP).

Hence, operators AY and Al are maximal monotones. In addition, these operators can also
be seen as subdifferential type, meaning that, AY = 9y, where ¢* : H — (—o00, 00| are lower
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semicontinuous convex functions defined by

dA(T) o (e d(z)n o 1 L v@ gy ifu
S [ G [ SR | st dn it e v

00, otherwise
for A € (0, 1].
For A = 0, Al = 0y where ¢ : Hy — (—00, o0] is a lower semicontinuous convex function
defined by
(2.7)
d d, 1
/ MWUW‘) dx +/ do()n SO de +/ ——[ulf® dz, ifueV
p(u) =9 Jo, p(@) o 2 p(x)

o0, otherwise.

Problems (1.1) and (1.4) can be written abstractly as

ui\ + A)\U)‘ = B(UA>
(2.8) ' .
u(0) = uy, forall X e (0,1],
and
2.9) ur + Agu = B(u)
u(0) = up.

The next lemma guarantees the density of the sets D(A®) and D(AY) for each A € (0, 1].
Lemma 2.3. The set D(A°) is dense in Hy. For each ) € (0,1], D(AY) is dense in H.

Proof. Consider C2°(€2) the space of functions with compact support in {2 which admits infinite
continuous derivatives. We define

Coo(Q2) == {f € CZ(Q); [ is constant is {2}

and
Lg, = {f € L™(Q); f is constant is )y }.

Letu € CZ%(Q), we will show that © € D(Aé{(’). First of all, u € V}, since

o OO—WIW)(Q) Pl
C25(Q) € C(Q) = Wol(Q) = V.

Besides, denoting by y g the characteristic function of the set £/, consider

oy =(=div(do(-)(|Vu[PY72 + 1) Vu) + [uPY2u) xq,

ou
+Z|QOZ /do )(|Vu|px) 2+77)a dz + /|UQO |p UQO dz | Xay,-

FO,i Q0 2

Note that, if w = 0 then oo, = 0. Asu € ng)(Q), then the support of «, is bounded. That is,
oy, € L () C Ho.
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Let w € Vj be arbitrary. Such as wq,, = w, =~ we have that

(v, w) g, = / — div(do(2)(|Vu["™ 2 + 1)) Vuw dx + /\u|p(1)2uw dx

Ql Q1
+§Z / 1 / Ao (Va2 4+ ) 2% dy | da
— |Q20,:] on
=0 To,
- 1
+ / / ug, , [PV 2uq, , dy |wdx
; |Qo,i| | 0, 0,
T Qo Qo,i

_ / — div(do(2) (| V™2 + ) Vuw dz + / WECE .

Q1 Q1

3 [ (Tur 2 Shwdy + 3 [ fu, 10, wdy

i=1 FO,i =1 Qo,i
:<AOU, w>V0/,V0~

Hence, o, = AJ®u and u € D(A®). In other words, CH(Q2) C D(AE°). Therefore, Hy C

Hoy 110
D(Ag")
In the case where A € (0, 1], it follows in an analogous way. O

Next we will present the strong and weak solution concept for (2.8)) and (2.9).

Definition 2.1. (1) Let T > 0. We say that u* € C([0,T]; H) is a strong solution of 2.8), if
(i) u? is absolutely continuous in any compact subinterval of (0,T);
(ii) u*(t) € D(AY) almost always in (0,T), with u*(0) = u};
d A
(iii) %(t) + A (uM(t)) = B(u(t)), almost always occurs in (0,T).
We say that u* € C([0,T]; H) is a weak solution of [2.8), if there exists a sequence of
strong solutions, of [2.8), that converges to v in C([0,T]; H).
(2) Let T > 0. We say that u € C([0,T]; Hy) is a strong solution of 2.9), if
(i) w is absolutely continuous in any compact subinterval of (0,T);
(ii) u(t) € D(AY®) almost always in (0, T), with u(0) = ug;

(iii) 2—?(75) + A (u(t)) = B(u(t)), almost always occurs in (0, T).

We say that u € C([0,T]; Hy) is a weak solution of (2.9), if there exists a sequence of
strong solutions, of (2.9), that converges to u in C([0,T]; Hy).

It follows from Theorem 3.17 and Remark 3.14 in [8] that (2.8)) has a global weak solution
——H

u(-,up) starting in u*(0) = uy € D(AY)" = H. If u} € D(AY) then the function u*(-, uy) is a
strong solution of (2.8)) Lipschitz continuous, for each A € (0, 1]. Analogously for (2.9).
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For A € (0, 1], we can define in H a semigroup {7 (¢)}+>o of nonlinear operators, associated
with @2.8) by Th\(t)uy = u?(t,up), t > 0.
To simplify, we will denote the solution u®(¢, ug) of 2.9) just by u(t, ug). Thus, if A = 0, we

can define in D(A}) "= Hya semigroup {7'(t) };>o of nonlinear operators, associated with
by T'(t)ug = u(t, ug), t = 0.

Furthermore, we have that the applications R™ x H > (¢, uy) — Th\(t)uy € H, forall X € (0, 1],
and R x Hy 3 (t,ug) — To(t)ug € Hy are continuous.

3. ESTIMATES INVOLVING THE SOLUTION

One of the purposes of this section is to ensure that there is an absorbent ball in H for the
dynamical systems (7 (t), H), for all A € (0, 1], and (T(t), Hy).
Lemma 3.1. Let u be the strong solution of [2.9). Then,

(i) There exist positive constants to and ro such that ||u(t)|| g, < 7o, forall t > t,
(ii) There exist positive constants t; and rysuch thay ||u(t)||v, < ri, forall t > t;.

We obtain the same estimative if u is the strong solution of ([2.8), uniformly for X in (0, 1].

Proof. Let u be a strong solution of (2.9). Taking the scalar product with u(¢) in (2.9), we obtain

2 MO, + (Agu(t), u(®)g e = (‘fl—jw,u(w)m + (Afou(t) u(t)
G.1) < 1B () = BO) o lu(t) 1, + 1BO) s, 0

We will consider the cases ||u(t)||y, = 1 and ||u(t)||v, < 1 separately as in [16].
If |u(t)|lv, = 1, it follows by Lemmal[2.2] that

min{my,

: B < :
=0l + D o), < 2 ), + (Agu(t), w0
< Lolu(@l3, + I BO)a, u()]

Since Vo < Hy then ||u() ||z, < wpl|w(t)|v,, where u = |Q] + 1, hence

1d c -
(32) §EHU(t)quo + o5 lu®lly, < cillu@®)F, + callul®) v,
where ¢ = min{myg, 1}, ¢; = Lpp? and ¢; = u||B(0)| 1, -
- 1
Consider 6§ = % and ¢ > 0, chosen in a way that 2% — 55 — —¢P > 0. It follows from
p-

Young inequality that

C2
cillu@)f, + callul®)llv, = ellult )Hvo +ellu)lve—

1y a\’ 1 - - 1)\’
<O, + 5 (%) + e o, +2(2)
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1 1
where ¢ = (p~)". Let v = 2% — 559 - ;5” > 0, then from (3.2)) we have that
1d , - a1 [/e)
3 O+l < 5 (2) +2(2).

Again, by Vy — Hj, we can conclude that

d 2y - d _
%Hu(t)”%{o + MTHU(t)H%O < a\IU(t)II?{O + 27[[u(®) 1Y,
0’ q
< 2(a + 2(e , Vt>=0.
0\ e q\ ¢

. 2 (¢ o 2/ \? 2y 9
Taklngézg — ) += =) .,7=—=¢ey(t) = |u(t)]z, we have

By Lemma 5.1 in [13]] we conclude that

2

o< ()

N
R
’BI
adl
N}
N——
~
N——
w‘
\‘ ©
<C
o~
V
(@]

That is,

Fixed ¢ty > 0, it follows that

lu(t)||m, < k1, forall ¢ > to,

1

-
P -_9 p

where k; = (%) + (’y(p 5 | to

If [u(t)l[v, <1 we have that [ju(t)[| s, < pllu®)llv, < p.
Let ro = max{ky, 1}, so

[u()]lm, < 70, VE = to,

which concludes the demonstration of item ().
For item (ii), using Young inequality, we have



EXISTENCE OF EXPONENTIAL ATTRACTOR VIA THE [-TRAJECTORY METHOD 13

d

dt ( ) ( ( ) ) Ho (Aéfouaut)Ho = (B(u)_utvut>Ho

= (B(w) ~ up wy — B(u)) + (Bu) — w, Bw))
< —1B() = wlfy, + 1B() =l Bl
< —5IB() — wliy, + 1B,

1 1
< SIB)I%, < 5 Ealulln + 1BO) )
Which guarantee, through item (i), that

d 1 1
Sou) < SIBIE, < 54, Vet

where ky := Lprg + ||B(0)||m,- By the subdifferential definition

1d
S el + o) = (Wi, + ()

< (Ut7 ) Hy + (a¢(u)7u>Ho = (B<u)7u)H0
(3.3) < IBu)l o llull o < karo, VE = to
Fixed k£ > 0 and integrating estimative (3.3) in [¢, ¢ + k], with ¢ > ¢, we get

t+k 1 ) 1 ) t+k
|t ds > Slute R, - Slul, [ e ds
t t

/t o o(u) ds <

<

~

Therefore,

t+k
Jutt + B2, + / () ds
t+k:t
\um&+[ karo ds

\ —7”0 + kk?g?”o = /{?3

»—[\:)Ir—l l\DI)—‘

(]

Using the Uniform Gronwall-Belman Lemma, Lemma 1.1 in [13], for y = ¢(u), ¢ = 0 and
h = £k} we conclude that

1
(3.4) wMHw»<%+5%h=m,w>m

Then, from (2.7) and (3.4)), we concluded that
1 1 1
e min{ong, 1Y)+ (V) < [ pu(t o) ds+ [ g 9ult P i
Qb Q

z)[P@ dz OacL u(t, )P da
< [ Shuttap® e+ [ o) vutenpd

Q1

(3.5) <oult)) <ks, VE>t)+k.
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In the case where [|u(t)||y, < 1, there is nothing to demonstrate. If ||u(¢)[|y, = 1, then we will
analyze the following cases:

(@) If ||ullp) < 1and ||[Vullpe) > 1. It follows from Proposition 2.1} that
+
lull?, < p(u) < ully,, and  [[VulP,) < p(|Vul) < Va2,

o)
+ —
[ullpy < p(u) +p(IVul) and  [|Vull7,) < p(u) + p(|Vul).
It follows from (3.5]) that

lullve =l[llp@) + [[Vullp)
<(plu) + p(IVul))7 + (pu) + p(IVu]))7

1 1
+k F +k- F
< .]9—4 + 'p—4 N>t + k.
min{mg, 1} min{my, 1}
(b) If [Jul[pz) = 1 and [|Vul[pm) < 1
It follows analogously from item (a), that is,

lullve <(p(w) + p(IVul))7 + (p(w) + p(|Vaul)) 7

1

1
+1. - +1. o5
<(—L2 )" (=2 )T etk
min{mg, 1} min{my, 1}
(©) If lullpy = 1 and || Vullpe) > 1. Again, by Proposition 2.1} we have that

1

+ - +
lullre, < o) < [l and  [Vull, < p(IVul) < [Vl
Then
g, < 2 (lull, + IVulg,) < 27 (p(w) + p(IVu))).
It follows from (3.3) that

1

+
P ky p
<2 ——2—) , Vt>ty+k.
HuHVO ( ln{ 0)1}) 0+

() If [|ul[pe) < 1and [[Vullpe) < 1.
It follows analogously from item (c), just change p~ for p™. In this case, we have

1
+ Py
Pk P
<2 —/——+ , Vt>tyg+ k.

lllv, (mln{mo,l}) ot
Therefore, for all ¢ > t; := ty + k, we conclude that

1 1
ks »* Pk "
t < 2|\ —/—/——= min{ma 1% o=
[[w(®)llvo maX{ (mln{mo,l}) * (mln{mo,l} "

Where v is the strong solution of (2.8)), we can estimate by the same constants, that is, r) = g
and r* = 7, for all A\ € (0, 1]. That is, we obtain uniform estimates in A € (0, 1].
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OJ

Lemma 3.2. Let u be the strong solution of (2.9), with u(0) = ug € Vo, and T' > 0. There exists
constant R > 0, depending on ||uo||v,, such that ||u(t)|v, < R, forall0 <t < T.

Besides, if u? is the strong solution of [2.8)), with uA(O) = ué‘ € V, there exists Ry, > 0,
depending on ||u} ||y, such that ||u(t)|ly < Ry, forall 0 <t < T.

Proof. Initially, we will show that there exists Ry > 0, depending on ||ug|| ,, such that ||u(¢)|| g, <
Ry, for all t > 0. We note that for initial data in bounded subsets of H,, we have R, uniformly
defined.

Through Lemma [3.1] there exist ¢, > 0 and ro > 0 such that ||u(t)||g, < 7o, for all ¢ > ¢,. Let
0 <t<tpand s € (0,t), proceeding as in (3.1 and using Young inequality, we can conclude

1d
5 2 )z, < Lillu(s)llZ, + [1B(0) L, [lu(s)lLm,

2 dt
]' 2 1 2
< LB+§ l|u(s)]|2, "‘5”3(0)”1{0

11
<max{ Lo+ 3. 5 IBOI (), + 1)

Let ¢; = max {Lp + 3, 1| B(0)||%, }. Integrating this last inequality to s varying in interval [0, ],
we have

t
()7, — Ilu(0)7, < 201/0 (lu(s)lz, + 1)ds,  Vt € [0, ).

Applying the Grénwall-Bellman Lemma for ¢(t) = ||u(t)||%, + 1, we conclude that

Ju()||m, < \/(IIU(O)II?{O + D)e2erto — 1, WVt € [0, ).
Therefore,

(36) ||u(t)||H0 < Ro, Vi 2 0,

where Ry = max {\/(Hu(O)quO + 1)e2erto — 1, 7“0}. More precisely,

Ry = max {muw)u%% T 1jezato — 1, (%) " (ﬁ(p_{ 2)t)

where ¢, is a real fixed positive and p = || + 1.
Again, through Lemma [3.1] using (3.6)), we have that

i

1 1
(w) < 5 (Lpllulls, + IB(0)]Im)* < 5K3, Vt>0,

at”? 2

where Ky := LRy + || B(0)||a,-
Let t > 0. Integrating the previous inequality in (0, ¢), we obtain

T
3.7) plut)) < pluo) + 5Kz, VO<t<T,
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In turn,
1
/ dw—l—/ do(x>n|Vu0|2dx+/ —— | [P da
p(x o 2 o p(x)
M M, 1
/ — VU0|p dx +/ o't dx +/ —uo [P dx
Q 2 Qb
M, 1
= —pp(|Vuol) + FPP(UO)-

We will analyze four cases.
(i) If || Vuol| o) () < 1 and [t ot g,y < 1, since LP®)(Qy) < L?(), we have
[Vuoll 22y < pllVuoll o,y < pe
Thus,

Mon 1 -
p(up) < _HVUJOHLP(I)(QI + T’f + FHUOHZ(@@) <

M, Mynu? 1
__0+ on .
P 2 P

Since |Jug||y, < 2, it follows that

luollZy  luollf, p* p
1< ot S Ty < 2oy, < 2(J|luolly, + 1)
Therefore,
My | Monp® | 1 My | Mony® | 1 +
< — <o - p 1).
(1) e +p7 p= +—5 +p, ([[uolly +1)

(D) If [ Vuo |l o) () < 1 and ||uol| o) () = 1, since LP@)(Q) < L*(Q), we have

Vol 220, < pllVuoll poe ,) < p-

Thus,
P(10) < SV + b+ - ol
< % + M0277,u + %HUOHZM(QQ
<o (24 200 LY (ualy; +1).

(iii) If || Vuol| o),y = 1 and [Jug || Lot o) < 1, since LP®)(Qy) — L*(€), we have

[Vuol| 2,y < 1l Vol pre ay)-
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Thus,
M077
p(uo) < ||VU0||LW> @y T 5 IVuollzzq,) + ,||U0||Lp<x>(91)
My | Mony? 1
<(—+ 5 ||Vu0||Lp<z> i

<

M, 077N
(— + 1) (ol
p P

oy Mo ) o !

‘\" /‘\/‘\B
i) 'B

(iv) If HVUOHLP(,,)(Q” > 1and [|u| o) (,) = 1, by inclusion LP()(Q;) — L*(Qy), we have

Mon 1 —+
p(up) < HvuOHLP(I) (1) +— 5 HVUOHL2 Q1) EHUOHZ@)(QI)

Mony® 1 +
||Vu0||Lp(ac) @) T 5 ||vu0||%p<z)(gl) + ;HUOHZMM(QI)'
Since [[Vugl|y@) > 1 then HvuoHme (1) > ”V”0|’ip<z>(91)'
Therefore,
M077M 1 +
p(uo) < p_HvuOHLP(Z) ont—5 — HVUOHLp(ac)(Q1 p__Hu(]Hip(z)(Ql)

My | Monp* 1 *
< max {p—_ + — (HVUOHLP(I) (1) + HuOHip(z)(Ql)>

2 p
My Mynu? 1 +
<max{ - M L o 5ol ooy + [t )
D 2 p
MQ Monuz 1 +
<2 — - p 1).
<2 (524 254 L) (luolf + )

We obtain the same conclusion in all cases

M, Monp? 1 +
68) i) <2 (52 + 4 Y (ulfy +1) = Fa

Returning to (3.7)), we have

T
o(u(t)) < K3+ 51{3 = K,;, Vtel0,T).

The same way that it was made in (3.3]), we can conclude that

- min{m, L} (p(u) + p([ V) < o(u(®) < Ky, Ve .71
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Proceeding as in the analysis of cases (a)-(b)-(c)-(d) of Lemma having ¢y = 0 and replacing
k4 for K, we obtain

p+K4 P%“ p+K4 P%
v < 9| (224 _ PR 1Y— R o<t<T
lu(®)llve max{ [(min{m0,1}> + (min{mg,l}

The demonstration for u* strong solution of (2.8)) can be made in an analogous way. In that case,
besides de dependency on ||u}]|v, the constant R > 0 is written in terms of constant M, that is,
the estimative is not uniform in \ varying in interval (0, 1]. O

This last Lemma allows us to conclude that a given 7" > 0 and a bounded D C V), the set

U To(t)D is bounded in V;. Analogously, for each A € (0,1], |J 7»(¢)D is bounded in V,
te[0,7] t€[0,7]
being D C V bounded.

Lemma 3.3. Let u be the strong solution of (2.9) and T' > 0. There exists constant C; > 0,
depending on T and on ||uy|| u,, such that

T
/ \Vu(t, z) [P dxdt < C,.
o Jou

We obtain the same conclusion if u” is the strong solution of [Q2.8), where X € (0,1]. More
precisely, for each \ € (0, 1], there exists C} > 0, depending on T and on ||u}||, such that

T
/ / IVl (t, 2)P@dzdt < CF.
0o Ja

Proof. Let u be the strong solution of (2.9). Using (3.1), (2.3) and the Young inequality, we obtain

1d 9 /
——||u + do(x Vup(x)d$+/
sl + [ dwIvul

951

do(a:)an\de—l—/ [P dx
0
< (I1B(u) = B(O)|[ 1o + 1B(O)] o) [l 19

1 1
(3.9) < Lpllulli, + 51BO)E, + 5l

Since/ do(2)n|Vul? dz = mon||Vul72q,) = 0and p(u) = / lu[P® dz > 0, we have
o 0

1d i 1 1
310 b+ [ 9ura < (L3 ) Il + S1BO),

Integrating (3.10) with respect to ¢ € [0, T, it follows that
T
), + 2ma [ [ Vu(t)P de d
0 (91

1 T
<2(Lot3) [ 1Ol e+ 1BOT+ ol
0
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that is,
T T
G 2zm [ [ [Va@P dede < Lo+ 1) [ u)l, de+ 1BOIRT +
0o Jo 0

Neglecting the second term on the left side of (3.10), once p(|Vu|) > 0, and integrating under
[0,t], where 0 < t < T, we obtain

t
lu(®)17, < lluollfy, + I1B(0)7,T + (2Ls + 1)/ lu(0)17, 6.
0
Using the Gronwal-Belmann Lemma
(3.12) la(t)13, < Uluoll, + I BO)I3,T)e® 51", forall t € [0, 7).

Integrating this last inequality with respect to ¢ € [0, 7], we conclude

T ) 1
t dt < ———

Therefore, returning to equation (3.11)),

(luollZ, + [1BO)|[2, T) (Lo 0T — 1),

T
2m0/ / IVu(t) P dz dt < (luoll 7, + HB(O)||§{OT)€(2LB+1)T7
o Jo

which concludes the demonstration. ]

Lemma 34. Let T > 0. If u is the weak solution of (2.9) in [0,T] then there exists constant
ko = ko(||w(0)|| my, T') > 0, such that

Aumwm&ﬁ<%.

We obtain the same conclusion if u” is the weak solution of 2.8)) in [0, T], where \ € [0,1). More
precisely, for each \ € (0, 1], there exists ki = kg (||u*(0)||z, T) > 0, such that

T
/Www%m&m<%
0

Proof. Being u the weak solution of (2.9), there exists a sequence (u;);ey of strong solution of

(2.9) such that
1—+00

lu = willeqo,rrim) —— 0.
For each ¢ € N, proceeding as in Lemma 3.3|to conclude (3.12)), we obtain

[Jwi () 1o < \/Hui(U)H%O +T|B(0)])3, o+, vt e0,T], VieN.
Consequently,
1
lulleqory < 1w — willeqoryo) + 1 (0) e 27 + VT B0) | e =2+ 27T,
making ¢ — oo, we have

313)  ullogormy < [u(0)]ae 27 + VT BO0)]|myet™» " = const(||u(0) | u,, 7).
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Defining ko := 2L3T (const(|[u(0)| r,, T))* + 2T'|| B(0)||%;, and using (3-13), we obtain
T T
/0 | Blu(®)) %, dt < / (IB(u(t)) — BO)[l s + | BO)||1)? dt

T
<13, / lu(t) 12, dt + 2 BO)||2,T

S2LBT ||ullZ o 7.5y + 21 BO) |7, T
<ko.

4. EXISTENCE OF EXPONENTIAL ATTRACTOR VIA L-TRAJECTORY METHOD

The aim of this section is to demonstrate that (7)(¢), H) has an exponential attractor, for all
A € [0,1]. In particular, this implies that (7\(¢), H) has a global attractor with finite fractal
dimension, for all A € [0, 1].

Let 7 be a positive constant obtained in item (77) of Lemma associated with ) = 1 and
k = 1. We consider the set

4.1) By = {u € Vo ||ullp@) < rand ||Vul/pm) <7}
Let u be a weak solution of (2.9)), with u(0) € V4. From (2.7), we have
D(p) :={u € Hp;p(u) < +o0} = V.

Using Lemma we can apply Theorem 3.6 from [8] for H = Hy, ¢ = ¢ and f = B(u). Since
u(0) € D(p), we conclude that t — (u(t)) is absolutely continuous in [0, 7|, where 7" > 0 is
arbitrary fixed. In particular ¢(u(t)) is bounded, for all ¢ € [0, T, that is, u(t) € D(y) = Vp, for
all t € [0, T)]. Therefore Ty(t)ug = u(t) € Vo, for all t > 0. Then,

(4.2) To(t)Vo C Vo, Vit = 0.

It follows from Theorem 3.6 from [8] that w is the strong solution of (2.9). Thus, through the
demonstration of Lemma 3.1} fixing positive values ¢, = 1 and k = 1, we have that

u(t)|lv, <7, V=2
So, [|u(t)||p@) < rand ||[Vu(t)|pm) < 7, forall t > 2. Therefore, since B; C Vj, we have

4.3) To(t)By C To(t)Vy C By, forallt > 2.
We define
te(0,2]

We obserVNe that By C V4. Indeed, given u E~B0 arbitrafy, there exist € [0,2] and by € By such
that u = Ty(¢)b;. Since By C Vj, then u = Ty(t)by € To(t)Vp. For (4.2), we have that u € V4.
For \ € (0,1], we consider By = {u € V; ||u|p) < rand ||[Vullpm) < r}and

(4.5) By = |J nn(t)B}
]

t€[0,2
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We note that B; C BY%(0,2r) and B} C BY(0,2r), for each A € (0,1], then B; and B; are
bounded sets in Vj. Therefore, by Lemma By is bounded in V; and, for each \ € (0, 1], BS‘ is
bounded in V.

Lemma 4.1. Set By, defined in (4.4), is a compact subset of Hy. Moreover, By is positively
invariant with respect to {Ty(t) }+>o-

For each \ € (0, 1), set B, defined in (&.3), is a compact subset of H. Moreover, B} is positively
invariant with respect to {T»(t) }+>o.

Proof. First of all, we will verify that By is positively invariant with respect to {7y () }+>0. Let
7 > 0 be arbitrary, we have that

To(r)Bo = | To(t)To(7)Bu.
t€(0,2]
If 7 > 2, from (4.3)), we have
(4.6) To(r)Bo € |J To(t)Bi = Bo, V7 >2.
t€[0,2]

Now, if 0 < 7 < 2,then 0 < 2 — 7 < 2. Hence, we can write

4.7) To(mBo=| |J Dt+nB|u| | Twt+7B |, vo<r<2

te[0,2—7] te[2—T,2]

Fort € [0,2 — 7] we have 7 < t + 7 < 2, thatis, 0 < ¢ + 7 < 2. Therefore,

(4.8) U Twt+7nBic |J Tot+7)Bi =B
t€[0,2—7] t+7€[0,2]
Fort € [2 — 7,2] we have ¢t + 7 > 2, then from (4.3)) we have
(4.9) U Twt+7B cB c |J To(t)B = B,
te[2—7,2] t€(0,2]

Substituting (4.8)) and in (.7), we conclude that To(7)By C By, forall 0 < 7 < 2.
Together with (4.6), we have To(7)By C By, forall 7 > 0.
Now, we will demonstrate the compactness of B,. Clearly B; is a bounded subset of Vj, since
—Hy .
Vo —<— H,, we have B, ~ compact in H,.
In turn, B is a closed subset in Hy. In fact, consider (u;);en a sequence in By and u € Hy, such
that

(4.10) g — ull gy == 0.

Since (u;);enis a bounded sequence in the reflexive space V;, then (u;);cn admits subsequence,
(u;, Jken, that weakly converges to Vj, that is, there exists @ € 1} such that

~ ~ k—o0
(.f7 Uiy, — U)Ho = <f7 WUjy, — u>V0',Vo *)—> 07 vf S VE)/
Therefore,

k—oo  ~ .
u;, — U, 1in Hy.
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Now, by convergence in (4.10), we have that u;, k2ol 4 in Hy, so @ = u. Then, u € V.
We must still show that ||u||,) < 7 and || Vul|,e) < 7. It follows from Theorem 4.9 in [23],
restricting to a subsequence if necessary, which we will still denote by (u;);cn, that

1—00

u;(x) — u(z), almost everywhere in 2.

Thus, for 0 < %’ < 1 there exists 7 € N such that

lui(x) —u(z)| < ﬁ, for all ¢ > iy and for almost every = € Q.
Since p(x) > p~ > 2 > 1, it follows that

p(z)
- — u(z)P@ d < [ = ;> .
u) /]ul u(z)| /<‘Q‘) dr < ]Q] dr = Vi > i

Therefore, for all i > iy, we have p(u; u) < £7% . For all i i > iy, it follows from (2.1)), that

1 1
HU|’p(w) < s — U”p(fv) + ”uin(:v) < max{sf EPT AT

as ¢ is arbitrarily small we concluded that ||u|| () <

We observe that (Vu,);ey is a bounded sequence in LP(®)(Q,R"), since LP®)(Q,R") is a
reflexive space, passing through a subsequence if necessary, which we will denote by (Vu;);en,
there exists v € LP(®) (€, R™) such that

Vau; 22y
Thus, ||[v]|pe) < liminf; o ||[Vllpe) < 7. We must just conclude that v = Vu, for which,
consider ¢ € C°((Q) arbitrary, it is possible to conclude through the inequality of Holder and by

@.10), that

1—00
4.11) 8:10] / 8x] dz.

Besides this, since Vu; —— v, we have

8 7 1—00

4 gbdx:—%/ngbdx.
o 0z; Q
So, it follows from (4.11]) and (4.12)), that

/ua—x]dx——/ﬂvj(bdx.

0
That is, 8_u =wv;forally=1,...,n
Lj
Therefore, ©w € B and B is closed in Hy. With that, B, is compact in H, and, consequently,
[0,2] x By is compact in R™ x Hj. For operator continuity R™ x Hy 3 (¢, ug) — To(t)ug € Ho,
we conclude that By = Ty(][0, 2]) By is compact.
The conclusion for By, with A € (0, 1], follows analogously. O

(4.12)
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For each A € (0, 1], we will denote by X, the set of 1-trajectories associated with (2.8), that
is, the set of all weak solutions of defined in interval [0, 1], equipped with space topology
L*(0,1; H).

Let A € [0,1]. If A € (0, 1], we will consider {L)(t)}:>o the shift semigroup of 1-trajectories,
that is,

Ly (t): X, — X\
X+ La(t)x:[0,1] - H
0 — uMt +0),

where u” is the only weak solution of with x = u|jp1. If A = 0, Xy = X denote the set
of 1-trajectories, that is, the set of all weak solutions of defined in interval [0, 1], equipped
with space topology L?(0,1; Hy) and {Lo(t) = L(t)}:>0 the shift semigroup of 1-trajectories,
L(t)x: [0,1] = Ho, 0 — u(t + 6) where u is the only weak solution of (2.9) with x = /1]

We define

(4.13) By = {x € X; x(0) € By}
and
(4.14) B) = {x € X,;x(0) € B}},

for all A € (0, 1].

Lemma 4.2. Set By, defined in @#.13), is compact in L*(0,1; Hy) and positively invariant with
respect to { L(t)};=o. For each \ € (0, 1], set B, defined in (#14), is compact in L*(0,1; H) and
positively invariant with respect to { Lx(t) }i>o-

Proof. Initially, we will verify that By is positively invariant with respect to { L(¢) }+>¢. Let x € By
and 7 > 0, we have that
(L(T)x)(s) = u(r +5), Vs €[0,1],
where u is the only weak solution of (2.9) in [0, 7 + 1] such that x = u|jo 1.
From Lemma[4.1] (L(7)x)(0) = u(r) € By, for each 7 > 0, implying that L(7)x € By, for
7 > 0. Hence, L(7)(By) C By, forall 7 > 0.
To check compactness, we first show that 3, is bounded in

{u € L*0,1;Vp); uy € L*(0,1; Hy)}.

In fact, given y € By arbitrary, there exists u solution of (2.9), such that x(t) = u(t), for all
t € 10, 1], where uy = x(0) € By C Vo = D(y). By Theorem 3.6 from [8],

T [( / |B(u ||H0dt)%+mr.

By consequence of Lemma [3.4] and from the inequality (3.8)), there exists a constant k5 > 0 such

that
% 2
el < K/ 1B(u uHodt) +\/so<u<o>>} <ks vy € By,

it suffices to consider k5 := 2(ko + K. 3) We note that k5 is uniform with respect to initial data
uy = x(0) € By, since from Lemma 3.2l By is a bounded subset ;.
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Moreover, from Poincaré inequality, there exist C5 > 0 such that

1
@19 s = [ (WOl + 93O < [ 190l
We will consider the case where ||Vu(t)|[,.) = 1. Since 2 < p~ < p(z) it follows from Proposi-
tion 2.1] that

IVu®)llpe < Va5, < pp(Vut)).

Thus, returning to (4.13)) and applying Lemma 3.3 we have that there exists C; > 0 such that

1
X172 (0.15) < C2 /0 /Q IVu(t) @) dedt < CoC.

We note that the constant C, = C(||uo|| s, ) is uniform with respect to initial data uy = x(0) € By,
since from Lemma[.1] By is a bounded subset of H,.
The case where || Vu(t)||,) < 1, we have from (4.15) that HXH%Q(O,LVO) < Cy. Therefore,
IxIZ2(0,11%) < min{Co, C1Co},  Vx € Bo.
Since Vy << Hy, from Lemma[2.1] we have that
{u € L*(0,1;Vo);us € L*(0,1; Hy)} > L*(0,1; Hy).

72
So, By 1 4 compact in L?(0, 1; Hy).

72
In turn, By is closed L%(0, 1; Hy). Indeed, let y € BOL (
in B, such that

0,1;H . .
R arbitrary, so there exists (X;)ien

1—00

(4.16) lIxi — X||L2(01H0) — 0.
For all i € N, we have that x; € By, that is, x; is the weak solution of (2.9), in [0, 1], with
Xi(0) € By. In particular y; € C([0,1]; Hp), so B(x:) € C([0, 1]; Hp), for all i € N.

Leti,j € N, ¢ # j, applying Lemma 3.1 from [8]] for u = x;, v = x;, A = Aglo, f = B(x;j)
and g = B(x;), we have

t
1 () = xi () o < 11x5(0) = xi(0) | + LB/ 1 (s) = xi ()|l s,
0
for all ¢ € [0, 1]. Through Gronwall-Bellman Lemma, we concluded that

(4.17) 15 (8) = Xa()ll 110 < [15(0) = xi ()| o™, W € [0,1], Vi, j € N.

In turn, (x;(0)):en is a sequence in By that from Lemma is a compact set of Hy. Then,
(xi(0))sen admits subsequence, (sz (0))ken, converging in Hy, in particular (x;, (0))xen is a Cauchy
sequence in Hy. Therefore, in , we have

k—o0

Sup X2 (1) = X (D)l 210 < €52 1Xi11 (0) = X3, (0) |12, — 0.
€[o

That is, (x;, )ken is a Cauchy sequence in C([0, 1]; Hy). Since C([0, 1]; Hp) is a complete space,
restricting to a subsequence if necessary, there exists y € C([0, 1]; Hy) such that

k—o0

(4.18) i = Xlleo1:00) = 0-
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Besides,

~ ~ k—o00
1Xi — Xllz200,1:m0) < lIXax — Xl o150 — 0.

It follows from that x = x, then x € C([0,1]; Hy).
Since (x;, )ren is a sequence of weak solutions of (2.9) in [0, 1], it is possible to conclude that
there is a sequence of strong solutions that converge to x in C'([0, 1]; Hp). So, x is a weak solution

of (2.9) in [0, 1]. We still have, from (4.18§), that x(0) € FOHO = By. Therefore, x € By and with
that By is closed in L?(0, 1; Hy), therefore we have the compactness of By.
The demonstration can be made analogously for ;, where A € (0, 1].
O

Let Wflzf,o(Q) = {f € W;*(Q); f is constant in € }. We will consider the sets
2 1,2 dx 2 '
Yo = qx € L0, 1; W o(2)); 7 € L7(0,1; V)

and

dt

From Lemma we obtain the following compact inclusions, Yy << L?(0,1; Hy) and
Y << L?*(0,1; H). We provide Y, and Yy, with the following norm

d
Y = {X e L2(0,1; W, *(Q)); =X ¢ L*(0,1; V’)} .

[ully = [Vl 20,0 + [l 2 0,007)-
In particular, if © € Y, we have
lullve = [[VullL20,1:m0) + [[well z20,1,0)-

In the next result we will demonstrate the Lipschitz property for operators
L(1): L?(0,1; Hy) — Yy, in By, and Ly(1): L?(0,1; H) — Y, in B}, for all X € (0, 1].

Lemma 4.3. There exist constants wy > 0 and wy > 0 such that
IL()x1 = LD xzllyvy < willxa — xellz20,1:m0), Yx1: X2 € Bo,
IZA(Wxa = La()xelly < wtlxa = xellzz,m): ¥xis xe € By

Proof. We will prove the Lipschitz property for L(1): L*(0,1; Hy) — Y, in By. The demonstra-
tion for operators Ly(1): L?(0,1; H) — Y, where A € (0, 1], can be made analogously.

Let x1, x2 € By be arbitraries, so there exist only u and v strong solutions of such that
ulj0,1] = x1 and v|[p1] = Xx2. We have that

uy + Aoy = Bu  and v 4+ Aov = Bu,
making the difference of the equations and denoting w = u — v, we can write

(4.19) wy + Afou — Al°v = Bu — Bo.
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Consider ¢ € V) = Wéop “)(Q), we have

[(we, )| < (A u — A0, 9) | + [(Bu — Bv, ),

< ) / do(x) {(|V7¢L|p(”)_2 +n)Vu — (|[VoP®=2 4 n)Vv} Vi dx
Q1

+ '/(|UI”(’”)_ZU = ol 20) g da | + || Bu — Bullm, |19l m,
Q

< My |||Vl =2V — | Vo P =2Vu| | Vi|de + Mon/ |Vw||Ve|da
951

1951

(4.20) T / P20 — [oP@~20]jldz + Ll s 1]
Q

Let € := {z € Q: Vw(t,z) # 0}. It follows from Holder inequality and from Lemma 2.1 in
[27], with & = 0, that

|| Vu|P® =2V — |V P =2V|| Vi |da

Q1
=/ ||Vu|p(x)—2vu _ |Vv|p(x)_2VU||V¢|dx
Q1
3
< ( || Vuf® 2y — |Vv|p(w)_2Vv||Vw|dx>
Q1
P@)=2%T,, _ [T p(@)—2 3
/ || Vul Vu — |V V| Vyl2ds
o) |Vuwl
1
= ( || VuP 2Ty — ]Vv|p(x)2VvHVw|dx>
Q1
1
p(x)—2 o p(x)—2 2
(/ ||VuP@=2Vy — |V @2V |V¢|2dx)
O Vuwl|
%
< vny/pt —1 ( || Vu[P 2Ty — |Vv|p(x)_2Vv||Vw|da7)
Q1
(4.21)

( [ v+ |Vv|>p<$>-2|w|2dx)

1951

In turn, from Holder inequality, we have
(4.22)

T)— 1 1 T)—
[ a7l 90270 < (4 2 ) U0l IVl + 907

Ls@) (@)
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where r(z) = 2 (x) and s(z) is obtained through % + T( ; =1, thatis, s(z) = pflfflz‘ We observe

that |[V|? € LT(I () and (|Vu| + | Vo] )P@-2 € L@ (Q,), since 1, u, v € Vj,

(4.23) p(IVYP) = [ [Vep@de < | [VYPDde
Q1 Ql
and
(4.24) ps((|Vu| + |Vo|)P@=2) < / (IVu| + Vo] )P@) da
Q1

<2 ( / |Vu|"@ da + / \W|p<x>dx).
Ql Ql
Thus, from (2.T)) and #.23)),

& .
[ <max{( ([ rvorea) }

IWI”(””’dx) ’"
(4.25) =max{p,(V)7~, p, (V1)) 7 }.
From (2.2)), it follows that

pp(V)TF < max{([Vely) 7, (199 5) 7
Returning to (4.23), we have

1951

p_ pt
@26 NIVl < max{IVIE, 19900, VOIS, IVOIEE,} i= 6oy

Analogously, from (2.1)), (2.2)) and (#.24) we have
1(IVul+ Vo[ P2

Ls(z) (ﬁl)
pt

<max{[|[Vul + Vo[l =, [1Vul + [Vol [l [Vl + |VU||| O yo V| + ’VU\HP(I)}
4.27)  =vuvol-

Returning to inequality (4.21)) and using @.22), (¢.26)) and (#.27)), we conclude that

|| VuP 2Ty — |Vo[P@ 2V Ve |da

1951

(4.28)

1
2

11 2
< Vv =1 | (4o vt ([ IV6PE290 (90200 Tl )
951

Proceeding in an analogous way, we can conclude that

/ P2 [0 20| | da
Q

11 :
429 <V T (2 ) o] ([ Pt opetoular)
Q
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Consider the notations
Litg) = /Q L FIPE72 = |g|PD=2g)| f — g| da
and
Ligrg) = | FIPE2f = gD 29|l f — gl da,
Q
1

Returning to (4.20), using (4.28)), (4.29) and the Holder inequality, it follows that

2 1

|(we, V) mo| < Mov/no/pt — 1 [( >§w£|w+|w} (Ti(vuvo)

(4.30) + Lllw|| |9 22, -

11 : .
V(5 ) ]| ) Vol V9l

Since w,v, ¥ € Vo, p(x) = p~ > 2 and || < oo, we can conclude that u, v, € WOI’Q(Q).
From Poincaré inequality, there exists o > 0 such that

[wllz, < @[Vl and [P, < [V,

It follows from (4.30) acting in ¢ = 1 + 6, where 0 € [0, 1], that

sup |(wt(1 + 0)? 1/J)H0|

llllvg <1
2 1 1
< Mo/t = [( ) S HG)HW(M)] ||ws|’|u b 1(5W)2 (Z1(vuti+6),vo110)) |
VoS
. 11 : : !
vt =1 —+ — | §uarotrase|  sup (&) (Zwato)varo))
r S llllvy <1
(4.31)

+ Mon[[Vw(l +0)[|u, sup  [[V|la,+Lpal|Vw(l +0)[[ma sup [[V)la,.

ll¥llvg <1 lPllv, <1

If ||¥lv, <1, then &gy, < 1and &, < 1. Since LP®) — L2, there exists a constant a; > 0, such
that

VY], < x| Vllpe) < arllllve-
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We conclude, from (@.31)), that

sup |(wy(1+6),v) |

lllvy <1

1

1
11 2 1
< Movny/pt — 1 K; + S—_> §|Vu<1+e>+|w<1+e>|] (Z1(vu110) vo(110) )
1
2

1

11
+v/pt—1 Kr— + S—) €|u(1+e>|+|v<1+o>] (Z(u+0)01+0) )

+ Monon [|[Vw(1 + 6) | a1, + LpoPon [|[Vw(1 + 0) | a,.

Knowing that (a + 0)? < 2(a® + b?), that is, (a + b + ¢)? < 4(a® + b?) + 2¢?, we have

( sup [(wi(1 +e>,w>H0\)2

IYllvy <1

<AMgV/n(pt - 1) (

) §1vu(140)|1+ Vo (1+0) L1 (Vu(146),Vo(1+6))

+
1 1
+4(p" - 1) (—_ + 8—_) &lu(140)+10(140)| L(u(1+6),0(1+0))

+ 2(Mynay + Lpaaq)?||Vw(1 + 9)“%{0

Therefore,

|| (L(l)Xl_L(l)X2)t||iZ(0’1’VO/)

1
= [ la-+ o)1 a

1 2
= / ( sup ’(wt(l + 9)7 w)H0|) do
0 \lllh,<1

1 1 1
<AMGVn(pt —1) (T—_ + S—_) / §vu(1+0) 1+ Vo(14+0) L1 (Vu1+6),vo(1+0)) A0
0
N 11 !
+4(pT - 1) —t = §lu(1+0)[+0(1+0) L(w(1+6) v(1+6)) O
0

1
(4.32) + 2(Monoy + LBOC2041)2/ IVw(1 +6)|1%, db.
0
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In turn, it follows from the demonstration of Lemma considering t, = % and k = %, the
existence of 75 > 0 such that ||u(t)|[y, < 7o, forallt > t; =ty + k = 1, then

Vu@+0)] + Vol +0)] llpe) < sup ([Vu(l +8)lpe) + Vol +0)|lpem)

0€[0,1]

< sup ([lu()]lv, + [[v(®)]Iv)
te(1,2]

<2’l"2, Vo € [0, 1]

So,

+
+

p_ P

§vu(140)|+vo(14+6)| < max{(2ry)s=, (2ry)s—, (2ry)+

"'@

p

,(2r9)sF } 1= Ky

-+

Likewise, we can conclude that &, (140)|+|v(1+6) < /1. Hence, in (4.32)), we have

HE@x — LX)

1 1 1
(4.33) <7 (/ L1 (vu(1+0),vo(1+0)) 40 +/ Ziuw(1+6),0(1+6)) dO +/ [Vw(1+0)|1%, dé’),
0 0 0

where y=max {4MZ/n(p™ — 1) (£ + L) k1, 4(p" — 1) (£ + L) k1, 2(Monas + Lpa’ar)?}.

T s s

Our next goal is to show the existence of a constant, 3; > 0, such that

1 1
(4.34) / Ty (Vu(146),vo(1+0)) A0 < 51/ [w(6)][3, db.
0 0

Making the product (-, w) g, in equation (4.19) we have
(wy, w) g, + (Aou — Alov, w) g, = (Bu — Bv, w),,
where

(Afou—Afov, w) gy, = (Aou — Agv, w>V0',Vo

- / do(z) ([VulP") 2 Vu — | Vo P 2Ve) Vw dz + / do(x)n(Vu — Vv)Vuw dx
Q1

Q1

+ /(|u]p(x)2u — o2\ w dx
0

ZmoLy (vu,ve) + mon Vwl|* dz + Lu)-
Q
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It follows from Lemma 2.1 in [27]], with § = 0, that

1d
2dt|\wHH0+mo/ eVl (Ful+ (90 do o [ (Gl do
1
2)—2
¥ / gl o] d
S 57 — w3, + MmoZi(vu,ve) +mon | [Vwl* dz + L
t 0
< (wtvw)Ho + (A(l)gou - AoHovaw)Ho
= (Bu — Bv,w)g,
< [|Bu = Bv|[ml[wl] 1,
(4.35) < Lpllw|%,
Since p(x) < pt we can write
1d oo
(4.30) 2dt||wHH0+m02p+ 1/ [Vwl]® ‘VU‘WL‘V"UD )72 da < LB||w||HO>
“37) gl mon [ 1Vufds < Lojul,
and
4.38) il + g5mr [ 0Pl + Pl do < Lallolfy,

Neglecting the second term of the sum in (#.36) and integrating to € varying in interval [s, t],
where 0 < s < t, it follows that

t
Jalt) i, < o), + 220 | 1w (®), o
From the Gronwall Bellman Lemma, we have
(4.39) lw(®) |7, < w(s)|[F,e? 2, for 0< s <t
Returning to (4.36) and integrating in interval |7, 2], with 7 € [0, 1], we obtain

1 1 2
ISl s [ [ 19Tl 92 deao < s [ o)1,

Then,

W/ / \Vw|*(|Vu| + |Vo|)P@ =2 dz db
S o 2/ / IVwl(|Vu| + Vo2 de df + [[w(2)|1F,

(4.40) < Jlw(r)|Z, +2Ls / lw(®) 2, db.
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We will now estimate the left side of inequality (4.40)). Since 0 < 7 < 6 < 2 then for (4.39),
with s = 7 and t = 6, we have

()17, < Ilw(r)|[F,e* =7,

Integrating this last inequality to 6 varying in [7, 2], we obtain

(4.41) 2Ln | @) d < Ja(r) 3 €57 — ()

Substituting in (4.40) we conclude that

(4.42) 73 / / IVw*(|Vu| + [V )PD 2 da df < ||lw(T)|[3,e* 7, Y7 e [0,1].
So, from (4.42)) and from Lemma 2.1 in [27], we have
/O S / 2 | IVu@PO V() = [Vo@) O V(@) [V (@) deds

< [ [ Iwu@pvun - 9P oV da
r Joy

2
< Vilp* — 1)/ IV 2(|Vu + [Vol P2 ddt

951
opt—2

2 etln . 0,1].
. [|w ()], e ) 7€ [0,1]

<Vn(p" -1) (

Integrating this last inequality for 7 varying in [0, 1] we have

1 —9 1

2p

/ Ty (vu(1+6),vo(1+6)) 40 < - Vn(pt — 1)€4LB/ [w(7)||%, dr.
0 0

Therefore [@#34) occurs for 3, = 27" 2mgt\/n(pt — 1)e*ls.
Proceeding analogously, we conclude the existence of S, > 0, such that

1 1
(4.43) / Ziu(140)0(146)) dO < 52/ [w(8) |17, d6.
0

In fact, using the same argumentation made in (4.36)), for (4.38)), it follows from (4.41) that

17 oo
57 | [ JoP(al + o) ddo < //rwr (1l + o2 de do + w2,

()|, + 2L / lw(8)[, do

(4.44) <Jw(T) |7, e* e, Vre[0,1].
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Then, from Lemma 2.1 in [27]], with 6 = 0, and (4.44]), we conclude that

1 2

| Tosasaso @0 = [ [ Iu@P@2u) = o 2o o) dedt
0 1

2

<[ [P 2 - 1o 2o o) deds
T JQ
2
<=0 [ [ P (ul+ oy doas
T JQ

<" = 1) (27 )lEet) . vr e 1)

Integrating this last inequality for 7 varying in [0, 1] we have

1 1
/ Liu(146),0(146)) A0 < (A 1)64LB/ lw(T)|l%, dr,
0 0

obtaining @43), with £, = 2P 2(pT — 1)e*Ls,
Besides, we have the existence of 53 > 0 such that

1
@.45) Va4 ) sy < P [ @), a0

In fact, integrating both sides of (4.37) under the interval [r,2], for 7 € [0, 1], it follows from
@.41), that

2 2
2mon / Vw6, 2) de df <2mon / Vw0, 2)| dedb + w2,
T 91 T 0

2
<), + 2L | w(©)], db

<lw(m) e, vreo,1].
Consequently,

1 2
/ /]Vw(1+9,a:)|2dxd9</ / \Vw(t,z)|? dz dt
0 JQ T J

eALB

<

QmOnHW(T)H?{m vr € [0,1].

Integrating this last inequality for 7 varying in [0, 1], we obtain (4.45]) with
B3 = et® (2mon) 1.
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Finally, it follows from (4.33)), @.34), (4.43)) and (4.43) that

IL(Dxx = L(W)xellve = IVw(l +)ll20,0m) + I(L()x1 = LX)l 120,107
<[IVw (1 + )|l £2(0,1510)

1

1 2
1
+ 72 (/ Ty (vu(1+0),v0(1+8)) 40+ Vw1 + ) |7201:0) +/ Tu(146),0(1+6)) d9)
0 0

1 ! 2 1
<[IVw(@ + ) lz2 o000 + 72 </ L1(Tu(1+6),90(1+6)) dg) +72[|[Vw(l + )l 22(0,1,110)
0

1 3
+ 72 (/ Liu(146),0(146)) d9>
0
<1 +) (/33 / (6 ||H0de) w( / (6 ||H0de)
1 1 %
o (ﬁz / waw%ode)
0

1 1 1
where wy = [(1+~2)582 + v232 4+ 72 32]. Thus, concluding the demonstration. O

=w1||X1 - X2HL2(0,1;H0)7

We emphasize that in this last Lemma the constant w; > 0 cannot be taken uniformly with

respect to the parameter A € (0, 1], given that the constant M, > 0 determined by the limitation of
diffusion d), composes the constant wlA.
Consider the applications

e:X — H,
(4.46) X~ x(1)
and

e X, H
(4.47) X = x(1),

for all A € (0, 1].

Lemma 4.4. Applications e and e, defined, respectively, in (4.46) and (4.47), are Lipschitz con-
tinuous in By and B, respectively.

Proof. We will demonstrate that e is Lipschitz continuous. The demonstration for e, is made the
same way.

Let x1,x2 € By, then there exits only u and v solutions of with u(0),v(0) € By such
that u|[071} = x1 and v|[071] = X2, we denote by w the difference © — v. Proceeding as in the
demonstration of Lemma4.3] we can conclude (4.39). In particular,

o)1l < lw®)]7,e* 0 < w(@)|F,e* =, Vo € [0,1].
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Integrating this last inequality, for # varying in [0, 1], we have

@l < e [ oo ||H0de)

leCx) — eCx)llmy = oW, < e llwllz2um) = e X1 = Xall2,1:0)-

Then,

Proposition 4.1. There exists constant c3 = c3(ug) > 0 such that

1
I L(s)x1 — L(t)xallr20,1:m0) < c3([s — 12 + |Ix1 — xallz20,1580) )

forallt,s € [0,1] and for all x1,x2 € By. For each \ € (0, 1], there exists ¢z = ¢3(ug) > 0 such
that

. 1
1 La(s)x1 — La(t)x2ll 20,1y < C3(]s — |2 + [[x1 — xall22(0,1:m))
forallt,s € [0,1] and for all x1, x> € By.

Proof. First of all, we will demonstrate that there exists ¢ > 0 so that
1
| To(s)uo — To(t)vollm, < c(]s — |2 + [[uo — vollmy),
forall s,¢ € [0, 1] and ug, vg € By. Indeed, for all s,t € [0, 1] and ug, vy € By
(4.48) [ To(s)uo — To(t)vollm, < | To(s)uo — To(t)uollm, + [ To(t)uo — To(t)vol| -

By the Fundamental Theorem of Calculus, Holder inequality, Fubini Theorem and Theorem 3.6
from [8]], once uy € By C Vo = D(¢p) , we have

ITo(s)uo — To(t)uoll7, = /Q | To(s)uo(x) — To(t)ug(x)|? da

8<To<9> o(2))odd| d

|S—t|//|To uo(z))g|? dO dx

et / I(To6)uo)oll3, 6

< s = t{(To(-)uo)ell 22 (0.1 010
< |3 - t|6%a

where ¢; = ¢1(uy). Besides, it follows from (4.39) that,

| To(t)uo — To(t)vollm, < calluo — vollmy-
So, returning to (4.48]), we have that
1
(449) HTO<S)U0 — TO(t>UO||H0 < 01|S — t| 2 + CQ“UO — U(]HHO
forall t,s € [0, 1] and ug, vy € By.
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From Lemma4.1] T(0)uo, To(0)vo € By, for all 8 € [0, 1]. From #49), we have
1
IL(s)x1 — L(t)x2l122(0.1.810) :/ 1To(s)To(0)uo — To(t)To(0)voll 3, dO
0

1
</ (c1 + 2)?(|s — t|2 + | To(0)uo — To(0)vol m,)* dO
0

<d(er + e2)*(|s =t + [Ixa — xallZ20.1.00))-

Therefore, for c3 = 2(¢; + ¢2), we conclude the result for {L(t)};>o. The estimative for case
A € (0, 1], follows analogously. O

Now, we state the main result of the work.

Theorem 4.1. The dynamic system associated with (2.9), has a global attractor Ay. Furthermore,
there exists a subset B of Hy, positively invariant, with Ay C B so that the dynamic system
(To(t), B) admits an exponential attractor &.

For each \ € (0, 1], the dynamic system associated with (2.8), has a global attractor Ay. More-
over, there exists a subset By, of H, positively invariant, with Ay C B, so that the dynamic system
(T\(t), Bx) admits an exponential attractor .

Proof. Let ug € Hyand T > 0, we have seen that admits a unique v € C([0,T]; Hy) weak
solution in [0, T'|. Due to Lemma we can apply Theorem 3.6 from [8], concluding, with this,
that u is the only strong solution of (2.9). From the demonstration of Lemma [3.1] fixing values of
to = k£ =1, we have

lu(®)|v, <7, Vt=2.
That is, ||u(t)||p@) < rand ||Vu(t)||pm) < 7, forall ¢t > 2. Therefore,

(4.50) u(t)y€ By C |J To(s)Bi=Bo, Vt>2.
s€[0,2]

Lemma and (4.50), guarantee Hypothesis (H2) of [1]. From Proposition Hypothesis
(H4), (H9) and (H10), from [1]], are satisfied. From Lemmas and we have, respectively,
that Hypothesis (H6) and (H8) from [1] are verified.

Moreover, from Hypothesis (H2) and (H4), it follows from Lemma that B satisfies the
hypothesis from Lemma 1.1 in [1]]. Then, from the demonstration of Theorem 2.1, in [1]], (L(), X)
admits a global attractor A,.

It follows from Theorem 2.5, in [1]], that the dynamic system (L(t), By) admits an exponential
attractor. Finally, Theorem 2.6, in [1]], guarantee that (75(t), e(5,)) has an exponential attractor in
&o-

Proceeding in an analogous way, we conclude the existence of an exponential attractor for the
dynamic system (7)\(t), ex(BB})), where A € (0, 1]. O

Remark 4.1. In the method of the {—trajectories, in [1l], we can consider the following alternative

hypothesis for (H1) and (H5), respectively,

(H1) For all uy € X and any T' > 0, exists, not necessarily a unique solution u for (1.6) in
[0, T, with u(0) = ug and u: [0,T] = (X, 0(X, X)) continuous.

(H5) Bfis compact in X, = L*(0,¢; X).
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