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ABSTRACT. This article is devoted to the study of the existence of an exponential attractor for a
family of problems, in which diffusion dλ blows up in localized regions inside the domain

uλt − div(dλ(x)(|∇uλ|p(x)−2 + η)∇uλ) + |uλ|p(x)−2uλ = B(uλ), in Ω

uλ = 0, on ∂Ω

uλ(0) = uλ0 ∈ L2(Ω),

and their limit problem via the l-trajectory method.
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1. INTRODUCTION

The existence of exponential attractors is an important feature for nonlinear systems of differ-
ential equations, thanks to the exponential rate of exponential attraction, attractors are more robust
under perturbations than the global attractor. Several authors have studied the existence of an
exponential attractor, see [6, 7, 13]. The following definition was proposed in [14].

Let (M, dM) be a metric space. A subset E ⊂ M in an exponential attractor for a semigroup
{S(t); t > 0} if E 6= ∅ is compact, has finite fractal dimension dimf(E) < ∞, is semi-invariant,
that is, S(t)E ⊂ E for all t > 0, and for all limit subset D ⊂ M there exist constants c1, c2 > 0
such that

distH(S(t)D, E) 6 c1e−c2t, for all t > 0.
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Here dimf(A) = lim sup
ε→0

log NM
ε (A)

log (1
ε
)

, and NM
ε (A) denotes the minimum number of ε-balls in space

M with centers in A necessary to cover the subset A ⊂ M.
Unlike the global attractor, the exponential attractor has no unity, and, therefore, the algorithm

used for its construction assumes an important role for its understanding. The existence of the
exponential attractor can guarantee through the squeezing property, see [14], or through softness
properties, see [28].

This paper concerns the existence of the exponential attractor for a family of problems domi-
nated by a perturbation of p(x)-Laplacian with great localized diffusion and its limit problem,
which will be described next.

Let Ω ⊂ Rn be an open, bounded, connected and smooth subset, with n > 1. Consider the
following family of problems

(1.1)


uλt − div(dλ(x)(|∇uλ|p(x)−2 + η)∇uλ) + |uλ|p(x)−2uλ = B(uλ), in Ω

uλ = 0, on ∂Ω

uλ(0) = uλ0 ∈ L2(Ω),

for λ ∈ (0, 1], where p ∈ C(Ω) satisfies

2 < p− := inf ess p 6 p(x) 6 sup ess p := p+ < +∞,

B : L2(Ω)→ L2(Ω) is globally Lipschitz and η > 0.
Let Ω0 be an open subset smooth of Ω with Ω0 ⊂ Ω and Ω0 =

m
∪
i=1

Ω0,i where m is a positive

integer and Ω0,i are smooth subdomains of Ω satisfying Ω0,i ∩ Ω0,j = ∅, for i 6= j. Define
Ω1 = Ω \ Ω0, Γ0,i = ∂Ω0,i and Γ0 =

m
∪
i=1

Γ0,i as the boundaries of Ω0,i and Ω0, respectively. Notice
that ∂Ω1 = Γ ∪ Γ0.

In addition, the diffusion coefficients dλ : Ω ⊂ Rn → (0,∞) are bounded and smooth functions
in Ω, satisfying

0 < m0 6 dλ(x) 6Mλ,

for all x ∈ Ω and 0 < λ 6 1. We also assume that the diffusion is large in Ω0 as λ → 0, or more
precisely,

(1.2) dλ(x)
λ→0−−→

{
d0(x), uniformly on Ω1;
∞, uniformly on compact subsets of Ω0,

where d0 : Ω1 → (0,∞) is a smooth function with 0 < m0 6 d0(x) 6M0 for all x ∈ Ω1.
If, in a reaction-diffusion process the diffusion coefficient behaves as expressed in (1.2), we

expect that the solutions of (1.1) will become approximately constant on Ω0. For this reason,
suppose that uλ converges to u as λ→ 0, in some sense, and that u takes, on Ω0, a time dependent
spatially constant value, which we will denote by uΩ0(t).

In this context we will obtain the equation that describes the limit problem. Notice that, since
the limit function u is in W 1,p(x)(Ω) and its constant value in Ω0, uΩ0(t) cannot be arbitrary. Also,
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in the boundary Γ0 = ∂Ω0 we must have u|Γ0
= uΩ0(t). In Ω1,we have

(1.3) uλt − div(dλ(x)(|∇uλ|p(x)−2 + η)∇uλ) + |uλ|p(x)−2uλ = B(uλ).

From properties of convergence of the function dλ(x) in Ω1, when λ→ 0, we get

ut − div(d0(x)(|∇u|p(x)−2 + η)∇u) + |u|p(x)−2u = B(u), for u ∈ W 1,p(x)(Ω).

Integrating (1.3) on Ω0, from Gauss’s Divergence Theorem, it follows that∫
Ω0

uλt dx+

∫
Γ0

dλ(x)(|∇uλ|p(x)−2 + η)
∂uλ

∂~n
dx+

∫
Ω0

|uλ|p(x)−2uλ dx =

∫
Ω0

B(uλ) dx,

where ~n denotes the unit inward normal to Ω0 in the surface integral. Taking the limit as λ → 0,
we get the following ordinary differential equation

u̇Ω0(t) +
1

|Ω0|

∫
Γ0

d0(x)(|∇u|p−2 + η)
∂u

∂~n
dx+

∫
Ω0

|uΩ0(t)|p−2uΩ0(t) dx

 = B(uΩ0(t)).

With these considerations we can write the limiting problem in the following way



ut − div(d0(x)(|∇u|p(x)−2 + η)∇u) + |u|p(x)−2u = B(u), in Ω1

u|Ω0,i
:= uΩ0,i

, in Ω0,i

u̇Ω0,i
+

1

|Ω0,i|

∫
Γ0,i

d0(x)(|∇u|p(x)−2 + η)
∂u

∂~n
dx+

∫
Ω0,i

|uΩ0,i
|p(x)−2uΩ0,i

dx

 = B(uΩ0,i
)

u = 0, on ∂Ω

u(0) = u0.

(1.4)

Several authors have studied the asymptotic behavior of problems with large diffusion located in
some regions of the domain. In physics, this situation can be found in composite materials where
the heat distribution of the material differ from one part to another. In [2] the authors obtained
the upper semicontinuity of the family of attractors associated with nonlinear reaction-diffusion
equations (1.1) with principal part governed by a degenerate p-Laplacian, where p is constant and
η = 0.

Another work that assumes similar hypotheses about the diffusion is [5], which the authors
analyze perturbations in elliptic equations, subjected to various boundary conditions

(1.5)

−div(dε(x)∇uε) + (λ+ Vε(x))uε = f(uε), in Ω
∂uε

∂ ~nε
+ bε(x)uε = gε, on ∂Ω

where 0 < ε 6 ε0, Ω ⊂ Rn is a bounded regular open connected set. Here ∂u
∂ ~nε

denotes the
conormal derivative relative to the diffusion operator −div(dε(x)∇u), i. e., ∂u

∂ ~nε
= dε(x)〈∇u, ~n〉.

Also, λ ∈ R and the potencials Vε(x) and bε(x) are given functions on Ω and ∂Ω, respectively.
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The diffusion is going to infinity in localized regions inside the domain and therefore solutions
undergo a localized spatial homogenization. The limiting elliptic operators is analyzed as well as
convegence of solutions, eigenvalues, and eigenfuctions.

The existence of an exponential attractor for a dynamic system provides a good understanding
of the asymptotic behavior of the solutions, because of the robust behavior of the exponential
attractor. Initially, in this work, we tried to guarantee the existence of an exponential attractor for
the problem (1.1) as presented in [2], with p constant and η = 0. Successful results were obtained,
even considering the general case where p is a function, by adding the term η > 0 in the main part
of the problem as (1.1). In physical terms, this change could indicate, for example, a viscosity of
the material as mentioned in [6].

To guarantee the existence of a family of exponential attractors, {Eλ}λ∈[0,1], associated with
problems (1.1)- (1.4), we will make an adaptation of the method known as the `−trajectories
method, suggested by Málek and Pražák in [1]. In this work the authors proved the existence of a
finite dimensional fractal global attractor and the existence of an exponential attractor, through the
`−trajectories method, for the problems of form{

u′(t) = F (u(t)), t > 0, in X,
u(0) = u0,

(1.6)

where X is an infinite dimensional Banach space, F : X → X is a nonlinear operator and u0 ∈ X.
Let ` > 0 be a constant. Briefly, the `−trajectories method comes from the observation that there

is an equivalent dynamic system, defined in a space of trajectories with amplitude ` > 0, in which
we can obtain conclusions about asymptotic behavior more easily and transfer these conclusions,
through an application with good properties, to the original dynamical system defined in the phase
space.

References [6] and [11] use the `−trajectories method to guarantee the existence of the expo-
nential attractor. In [6], the author studies the generalized logistic equation

(1.7) ut − div(ν∇u+ µ̃|∇u|p−2∇u) = κu(1−
∫ τ

0

u(x, t− s)dµ(s)),

in Ω×(0,∞) ⊂ R2×(0,∞), where the delay is captured by the convolution time with non-negative
µ Borel measure, with µ([0, τ ]) = 1, and constants ν > 0, µ̃ > 0 and p > 2, demonstrating the
existence of the exponential attractor, once proven that the solutions are asymptotically bounded.
Therefore, like in problems (1.1)-(1.4), considering p(x) constant equal to p, in (1.7), the diffusion
is in the Laplacian plus the p-Laplacian.

In [11], the authors used the `−trajectories method to build an exponential attractor for the
dynamic system associated with the equation

ut − div(a(x, u,∇u)) + f(u) = g(x), (x, t) ∈ Ω× (0,+∞)

u(·, t)|∂Ω = 0, t ∈ (0,+∞)

u(x, 0) = u0(x), x ∈ Ω,

where a : Ω× R1 × Rn → Rn satify some hypothesis, among them

(1.8) |a(x, u,∇u)− a(x, v,∇v)|Rn 6 β0|∇u−∇v|Rn + β1|u− v|.
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A typical example, mentioned in [11], is

ut − div(((|∇u|2 + ε)
p−2

2 + η)∇u) + |u|qu− |u|ru = g(x),

where p ∈]1, 2[, ε > 0, q > r > 0 and η > 0.
Property (1.8), essential in [11], is not satisfied for

a(x, u,∇u) = d(x)(|∇u|p(x)−2 + η)∇u,
since p(x) > 2, therefore Lemma 2.2, in [27], allows us to estimate

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v|
in function of |∇u−∇v| and |∇u|+ |∇v|, and still use the `−trajectories method.

In the case of η = 0, we did not obtain conclusions about the global attractor fractal dimension
Aλ for each λ ∈ (0, 1]. In [21], for example, the authors concluded that the global attractor in
L2(Ω), associated with problems of the form

(1.9)


ut − div(|∇u|p(x)−2∇u) + f(x, u) = g, in Ω× R+

u = 0, in ∂Ω× R+

u(x, 0) = 0, in Ω,

where g, u0 ∈ L2(Ω), p ∈ C(Ω) with 2 6 p(x) < ∞, for all x ∈ Ω, and f satisfying some
hypothesis; possesses infinite fractal dimension. Now, in [24], supposing in (1.9), p(x) constant
equal to p and f(x, u) = f(u), the authors showed that the global attractor associated with (1.9)
admits a finite fractal dimension in Lq+δ(Ω), where q is the conjugate exponent of p and δ ∈
[0,+∞).

This paper is organized as follows. In Section 2, we define the operators Aλ and A0, from the
main part of the equations, we also show some properties and we present the results of strong
solution to (1.1) and (1.4). In Section 3, we verify some estimates for the solutions, seeking to
the existence of a compact set positively invariant for the dynamics in phase space associated with
(1.1) and (1.4), as well as, for the equivalent dynamics defined in the space of the `−trajectories.

In Section 4 we present the dynamical of 1−trajectories associated with (1.1) and (1.4) and
guarantee the finite fractal dimension of global attractors in Lemma 4.3. Finally, we prove the
main result of this article, Theorem 4.1, which guarantee the existence of an exponential attractor
for the family of problems(1.1)-(1.4).

2. EXISTENCE OF SOLUTIONS

In this section we present the operators associated with our problems and establish some of their
properties. In addition we guarantee the existence of a unique solution for (1.1)-(1.4).

We will consider the following spaces and notations.

V := W
1,p(x)
0 (Ω), V0 := W

1,p(x)
Ω0,0

(Ω) := {u ∈ W 1,p(x)
0 (Ω) : u is constant in Ω0},

H := L2(Ω), H0 := L2
Ω0

(Ω) := {u ∈ L2(Ω) : u is constant in Ω0}.
The space V0 is equipped with the norm in V

‖v‖V := ‖v‖Lp(x)(Ω) + ‖∇v‖Lp(x)(Ω),
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where Lp(x)(Ω) = {v : Ω→ R; v is measurable and
∫

Ω
|v(x)|p(x) dx <∞}.

Note that V and V0 are reflexive Banach spaces, V dense in Hilbert space H and V0 dense in H0.
Moreover V ↪→↪→ H ↪→ V ′ which implies that V0 ↪→↪→ H0 ↪→ V ′0 .

We denote by ρp(·)(v), or simply for ρ(v),
∫

Ω
|v(x)|p(x) dx, and we have

‖v‖Lp(x)(Ω) = ‖v‖p(x) := inf
{
λ > 0 : ρ

(v
λ

)
6 1
}
.

Next, we present a result that makes many estimates involving spaces Lp(x)(Ω) more flexible, for
more details check [26].

Proposition 2.1. Let u ∈ Lp(x)(Ω).

(i) If ‖u‖p(x) > 1, so ‖u‖p
−

p(x) 6 ρ(u) 6 ‖u‖p
+

p(x).

(ii) If ‖u‖p(x) 6 1, so ‖u‖p
+

p(x) 6 ρ(u) 6 ‖u‖p
−

p(x).

From this Proposition it is possible to obtain the following estimates for v ∈ Lp(x)(Ω),

(2.1) min{ρ(v)
1
p− , ρ(v)

1
p+ } 6 ‖v‖p(x) 6 max{ρ(v)

1
p− , ρ(v)

1
p+ }.

and

(2.2) min{‖v‖p
−

p(x), ‖v‖
p+

p(x)} 6 ρp(v) 6 max{‖v‖p
−

p(x), ‖v‖
p+

p(x)}.
For completeness we enunciate the well-known Aubin-Lions Lemma. For more details see [12].

Lemma 2.1. Let p1 ∈ (1,∞] and p2 ∈ [1,∞). Let X be a Banach space and Y, Z separable and
reflexive Banach spaces in such a way that Y ↪→↪→ X ↪→ Z. So, for all T ∈ (0,∞),

{u ∈ Lp1(0, T ;Y );u′ ∈ Lp2(0, T ;Z)} ↪→↪→ Lp1(0, T ;X).

For λ ∈ (0, 1] we consider

D(Aλ) = {u ∈ V : −div(dλ(x)(|∇u|p(x)−2 + η)∇u) ∈ L2(Ω)}
and for u ∈ D(Aλ),

Aλ(u) = −div(dλ(x)(|∇u|p(x)−2 + η)∇u) + |u|p(x)−2u.

If λ = 0,
D(Aλ) = {u ∈ V0 : −div(d0(x)(|∇u|p(x)−2 + η)∇u) ∈ L2(Ω1)}

and for u ∈ D(A0),

A0(u) = (−div(d0(x)(|∇u|p(x)−2 + η)∇u) + |u|p(x)−2u)χΩ1

+
n∑
i=1

1

|Ω0,i|

∫
Γ0,i

d0(x)(|∇u|p(x)−2 + η)
∂u

∂~n
dx+

∫
Ω0,i

|uΩ0,i
|p(x)−2uΩ0,i

dx

χΩ0,i

where χE is the characteristic function of the set E.
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We denote by 〈·, ·〉 the inner product in H and by 〈·, ·〉Vλ′,Vλ the duality between V ′λ and Vλ,
λ ∈ [0, 1], where Vλ = V, for λ ∈ (0, 1].

The next results deal with some important properties of operators Aλ, λ ∈ [0, 1].

Lemma 2.2. For all λ ∈ [0, 1], we have

〈Aλu, u〉V ′λ,Vλ >


min{m0, 1}

2p+ ‖u‖p
+

Vλ
, if ‖u‖Vλ 6 1,

min{m0, 1}
2p+ ‖u‖p

−

Vλ
, if ‖u‖Vλ > 1.

Proof. We will demonstrate case λ = 0, case λ ∈ (0, 1] can be similarly demonstrated. Let u ∈ V0

be arbitrary, by the Divergence Theorem, we have

(2.3) 〈A0u, u〉V ′0 ,V0
=

∫
Ω1

d0(x)|∇u|p(x) dx+

∫
Ω1

d0(x)η|∇u|2 dx+

∫
Ω

|u|p(x) dx.

So,

〈A0u, u〉V ′0 ,V0
> m0

∫
Ω1

|∇u|p(x) dx+

∫
Ω

|u|p(x) dx > min{m0, 1}(ρ(|∇u|) + ρ(u)).(2.4)

Suppose that ‖u‖V0 6 1, so necessarily ‖u‖p(x) 6 1 and ‖∇u‖p(x) 6 1. By Proposition 2.1,

ρ(u) + ρ(|∇u|) > ‖u‖p
+

p(x) + ‖∇u‖p
+

p(x) >
1

2p+ (‖u‖p(x) + ‖∇u‖p(x))
p+

=
1

2p+ ‖u‖
p+

V0
.(2.5)

Hence, from (2.4), it follows that

(2.6) 〈A0u, u〉V ′0 ,V0
> min{m0, 1}

1

2p+ ‖u‖
p+

V0
, if ‖u‖V0 6 1.

When ‖u‖V0 = ‖u‖p(x) + ‖∇u‖p(x) > 1, we shall analyze four possibilities.
(i) If ‖u‖p(x) 6 1 and ‖∇u‖p(x) 6 1. It follows from (2.5) that

ρ(u) + ρ(|∇u|) > 1

2p+ ‖u‖
p−

V0
.

(ii) If ‖u‖p(x) 6 1 and ‖∇u‖p(x) > 1. From Proposition 2.1 we conclude that

ρ(u) + ρ(|∇u|) > ‖u‖p
+

p(x) + ‖∇u‖p
−

p(x)

> ‖∇u‖p
−

p(x) =
1

2p−
(2‖∇u‖p(x))

p− >
1

2p+ ‖u‖
p−

V0
.

(iii) If ‖u‖p(x) > 1 and ‖∇u‖p(x) 6 1. Following the same arguments as case (ii), we have

ρ(u) + ρ(|∇u|) > ‖u‖p
−

p(x) >
1

2p+ ‖u‖
p−

V0
.

(iv) If ‖u‖p(x) > 1 and ‖∇u‖p(x) > 1. From Proposition 2.1 we have

ρ(u) + ρ(|∇u|) > ‖u‖p
−

p(x) + ‖∇u‖p
−

p(x) >
1

2p−
(‖u‖p(x) + ‖∇u‖p(x))

p− >
1

2p+ ‖u‖
p−

V0
.
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Therefore, from (2.4), it follows that

〈A0u, u〉V ′0 ,V0
> min{m0, 1}

1

2p+ ‖u‖
p−

V0
, if ‖u‖V0 > 1.

Together with (2.6) we conclude the demonstration. �

Theorem 2.1. The operators Aλ : D(Aλ) ⊂ V → V ′, λ ∈ (0, 1] and A0 : D(A0) ⊂ V0 → V ′0 are
monotone, hemicontinuous and coercive.

Proof. Let u, v ∈ V0, it is possible to conclude, using the Divergence Theorem and the Tartar
inequality, that

〈A0u−A0v, u− v〉V ′0 ,V0

> m0

∫
Ω1

23−p(x)

p(x)
|∇(u− v)|p(x) dx+m0η

∫
Ω1

|∇(u− v)|2 dx+

∫
Ω

23−p(x)

p(x)
|u− v|p(x) dx

> m0
23−p+

p+
ρ(|∇(u− v)|) +m0η‖∇(u− v)‖2

H0
+

23−p+

p+
ρ(u− v).

Then, A0 is a monotone operator. Besides, let w ∈ V0 and 0 < t < 1 be arbitrary, we have

|〈A0(u+ tv)− A0(u), w〉V ′0 ,V0
|

6

∣∣∣∣∫
Ω1

d0(x)[(|∇(u+ tv)|p(x)−2 + η)∇(u+ tv)− (|∇u|p(x)−2 + η)∇u]∇w dx

∣∣∣∣
+

∣∣∣∣∫
Ω

(|u+ tv|p(x)−2(u+ tv)− |u|p(x)−2u)w dx

∣∣∣∣.
From the Dominated Convergence Theorem, we have the hemicontinuity of A0. Finally, the coer-
civity is obtained from Lemma 2.2. The case λ ∈ (0, 1] can be demonstrated analogously. �

It follows from the Example 2.3.7, p.26 in [8] that the operators Aλ, λ ∈ [0, 1] are monotone
maximals.

We define the sets

D(AHλ ) := {v ∈ V : Aλv ∈ H}, for λ ∈ (0, 1],

D(AH0
0 ) := {v ∈ V0 : A0v ∈ H0},

and consider the operators AHλ : D(AHλ ) ⊂ H → H given by

AHλ (u) = Aλu, ∀u ∈ D(AHλ ), for λ ∈ (0, 1] and

AH0
0 (u) = A0u, ∀u ∈ D(AH0

0 ).

Hence, operators AHλ and AH0
0 are maximal monotones. In addition, these operators can also

be seen as subdifferential type, meaning that, AHλ = ∂ϕλ, where ϕλ : H → (−∞,∞] are lower
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semicontinuous convex functions defined by

ϕλ(u) =


∫

Ω

dλ(x)

p(x)
|∇u|p(x) dx+

∫
Ω

dλ(x)η

2
|∇u|2 dx+

∫
Ω

1

p(x)
|u|p(x) dx, if u ∈ V

∞, otherwise

for λ ∈ (0, 1].
For λ = 0, AH0

0 = ∂ϕ where ϕ : H0 → (−∞,∞] is a lower semicontinuous convex function
defined by
(2.7)

ϕ(u) =


∫

Ω1

d0(x)

p(x)
|∇u|p(x) dx+

∫
Ω1

d0(x)η

2
|∇u|2 dx+

∫
Ω

1

p(x)
|u|p(x) dx, if u ∈ V0

∞, otherwise.

Problems (1.1) and (1.4) can be written abstractly as

(2.8)

{
uλt + Aλu

λ = B(uλ)

uλ(0) = uλ0 , for all λ ∈ (0, 1],

and

(2.9)

{
ut + A0u = B(u)

u(0) = u0.

The next lemma guarantees the density of the sets D(AH0
0 ) and D(AHλ ) for each λ ∈ (0, 1].

Lemma 2.3. The set D(AH0
0 ) is dense in H0. For each λ ∈ (0, 1], D(AHλ ) is dense in H .

Proof. Consider C∞c (Ω) the space of functions with compact support in Ω which admits infinite
continuous derivatives. We define

C∞c,0(Ω) := {f ∈ C∞c (Ω); f is constant is Ω0}

and
L∞Ω0

:= {f ∈ L∞(Ω); f is constant is Ω0}.

Let u ∈ C∞c,0(Ω), we will show that u ∈ D(AH0
0 ). First of all, u ∈ V0, since

C∞c,0(Ω) ⊂ C∞c,0(Ω)
W 1,p(x)(Ω)

= W
1,p(x)
Ω0,0

(Ω) = V0.

Besides, denoting by χE the characteristic function of the set E, consider

αu :=(−div(d0(·)(|∇u|p(·)−2 + η)∇u) + |u|p(·)−2u)χΩ1

+
m∑
i=1

1

|Ω0,i|

∫
Γ0,i

d0(x)(|∇u|p(x)−2 + η)
∂u

∂~n
dx +

∫
Ω0,i

|uΩ0,i
|p(x)−2uΩ0,i

dx

χΩ0,i
.

Note that, if u = 0 then αu = 0. As u ∈ C∞c,0(Ω), then the support of αu is bounded. That is,
αu ∈ L∞Ω0

(Ω) ⊂ H0.
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Let w ∈ V0 be arbitrary. Such as wΩ0,i
= w|Γ0,i

we have that

(αu, w)H0 =

∫
Ω1

− div(d0(x)(|∇u|p(x)−2 + η))∇uw dx+

∫
Ω1

|u|p(x)−2uw dx

+
m∑
i=1

∫
Ω0,i

1

|Ω0,i|

∫
Γ0,i

d0(y)(|∇u|p(y)−2 + η)
∂u

∂~n
dy

w dx
+

m∑
i=1

∫
Ω0,i

1

|Ω0,i|

∫
Ω0,i

|uΩ0,i
|p(y)−2uΩ0,i

dy

w dx
=

∫
Ω1

− div(d0(x)(|∇u|p(x)−2 + η))∇uw dx+

∫
Ω1

|u|p(x)−2uw dx

+
m∑
i=1

∫
Γ0,i

d0(y)(|∇u|p(y)−2 + η)
∂u

∂~n
w dy +

m∑
i=1

∫
Ω0,i

|uΩ0,i
|p(y)−2uΩ0,i

w dy

=〈A0u,w〉V ′0 ,V0
.

Hence, αu = AH0
0 u and u ∈ D(AH0

0 ). In other words, C∞c,0(Ω) ⊂ D(AH0
0 ). Therefore, H0 ⊂

D(AH0
0 )

H0

.
In the case where λ ∈ (0, 1], it follows in an analogous way. �

Next we will present the strong and weak solution concept for (2.8) and (2.9).

Definition 2.1. (1) Let T > 0. We say that uλ ∈ C([0, T ];H) is a strong solution of (2.8), if
(i) uλ is absolutely continuous in any compact subinterval of (0, T );

(ii) uλ(t) ∈ D(AHλ ) almost always in (0, T ), with uλ(0) = uλ0 ;

(iii)
duλ

dt
(t) + AHλ (uλ(t)) = B(uλ(t)), almost always occurs in (0, T ).

We say that uλ ∈ C([0, T ];H) is a weak solution of (2.8), if there exists a sequence of
strong solutions, of (2.8), that converges to uλ in C([0, T ];H).

(2) Let T > 0. We say that u ∈ C([0, T ];H0) is a strong solution of (2.9), if
(i) u is absolutely continuous in any compact subinterval of (0, T );

(ii) u(t) ∈ D(AH0
0 ) almost always in (0, T ), with u(0) = u0;

(iii)
du

dt
(t) + AH0

0 (u(t)) = B(u(t)), almost always occurs in (0, T ).

We say that u ∈ C([0, T ];H0) is a weak solution of (2.9), if there exists a sequence of
strong solutions, of (2.9), that converges to u in C([0, T ];H0).

It follows from Theorem 3.17 and Remark 3.14 in [8] that (2.8) has a global weak solution
uλ(·, uλ0) starting in uλ(0) = uλ0 ∈ D(AHλ )

H
= H . If uλ0 ∈ D(AHλ ) then the function uλ(·, uλ0) is a

strong solution of (2.8) Lipschitz continuous, for each λ ∈ (0, 1]. Analogously for (2.9).
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For λ ∈ (0, 1], we can define in H a semigroup {Tλ(t)}t>0 of nonlinear operators, associated
with (2.8) by Tλ(t)uλ0 = uλ(t, uλ0), t > 0.

To simplify, we will denote the solution u0(t, u0) of (2.9) just by u(t, u0). Thus, if λ = 0, we

can define in D(AH0
0 )

H0

= H0 a semigroup {T (t)}t>0 of nonlinear operators, associated with (2.9)
by T (t)u0 = u(t, u0), t > 0.

Furthermore, we have that the applications R+×H 3 (t, uλ0) 7→ Tλ(t)u
λ
0 ∈ H , for all λ ∈ (0, 1],

and R+ ×H0 3 (t, u0) 7→ T0(t)u0 ∈ H0 are continuous.

3. ESTIMATES INVOLVING THE SOLUTION

One of the purposes of this section is to ensure that there is an absorbent ball in H for the
dynamical systems (Tλ(t), H), for all λ ∈ (0, 1], and (T0(t), H0).

Lemma 3.1. Let u be the strong solution of (2.9). Then,

(i) There exist positive constants t0 and r0 such that ‖u(t)‖H0 6 r0, for all t > t0.
(ii) There exist positive constants t1 and r1such thay ‖u(t)‖V0 6 r1, for all t > t1.

We obtain the same estimative if uλ is the strong solution of (2.8), uniformly for λ in (0, 1].

Proof. Let u be a strong solution of (2.9). Taking the scalar product with u(t) in (2.9), we obtain

1

2

d

dt
‖u(t)‖2

H0
+ 〈A0u(t), u(t)〉V ′0 ,V0

=

(
du

dt
(t), u(t)

)
H0

+ (AH0
0 u(t), u(t))H0

6 ‖B(u(t))−B(0)‖H0‖u(t)‖H0 + ‖B(0)‖H0‖u(t)‖H0 .(3.1)

We will consider the cases ‖u(t)‖V0 > 1 and ‖u(t)‖V0 < 1 separately as in [16].
If ‖u(t)‖V0 > 1, it follows by Lemma 2.2 that

1

2

d

dt
‖u(t)‖2

H0
+

min{m0, 1}
2p+ ‖u(t)‖p

−

V0
6

1

2

d

dt
‖u(t)‖2

H0
+ 〈A0u(t), u(t)〉V ′0 ,V0

6 LB‖u(t)‖2
H0

+ ‖B(0)‖H0‖u(t)‖H0 .

Since V0 ↪→ H0 then ‖u(t)‖H0 6 µ‖u(t)‖V0 , where µ = |Ω|+ 1, hence

(3.2)
1

2

d

dt
‖u(t)‖2

H0
+

c

2p+ ‖u(t)‖p
−

V0
6 c1‖u(t)‖2

V0
+ c2‖u(t)‖V0 ,

where c = min{m0, 1}, c1 = LBµ
2 and c2 = µ‖B(0)‖H0 .

Consider θ =
p−

2
and ε > 0, chosen in a way that

c

2p+ −
1

θ
εθ − 1

p−
εp
−
> 0. It follows from

Young inequality that

c1‖u(t)‖2
V0

+ c2‖u(t)‖V0 = ε‖u(t)‖2
V0

c1

ε
+ ε‖u(t)‖V0

c2

ε

6
1

θ
εθ‖u(t)‖p

−

V0
+

1

θ′

(
c1

ε

)θ′
+

1

p−
εp
−‖u(t)‖p

−

V0
+

1

q

(
c2

ε

)q
,
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where q = (p−)′. Let γ =
c

2p+ −
1

θ
εθ − 1

p−
εp
−
> 0, then from (3.2) we have that

1

2

d

dt
‖u(t)‖2

H0
+ γ‖u(t)‖p

−

V0
6

1

θ′

(
c1

ε

)θ′
+

1

q

(
c2

ε

)q
.

Again, by V0 ↪→ H0, we can conclude that

d

dt
‖u(t)‖2

H0
+

2γ

µp−
‖u(t)‖p

−

H0
6

d

dt
‖u(t)‖2

H0
+ 2γ‖u(t)‖p

−

V0

6
2

θ′

(
c1

ε

)θ′
+

2

q

(
c2

ε

)q
, ∀t > 0.

Taking δ =
2

θ′

(
c1

ε

)θ′
+

2

q

(
c2

ε

)q
, γ̃ =

2γ

µp−
e y(t) = ‖u(t)‖2

H0
we have

d

dt
y(t) + γ̃y(t)

p−
2 6 δ, ∀t > 0.

By Lemma 5.1 in [13] we conclude that

y(t) 6

(
δ

γ̃

) 2
p−

+

(
γ̃

(
p− − 2

2

)
t

)− 2
p−−2

, ∀t > 0.

That is,

‖u(t)‖H0 6

((
δ

γ̃

) 2
p−

+

(
γ̃

(
p− − 2

2

)
t

)− 2
p−−2

) 1
2

6

(
δ

γ̃

) 1
p−

+

(
γ̃

(
p− − 2

2

)
t

)− 1
p−−2

, ∀t > 0.

Fixed t0 > 0, it follows that

‖u(t)‖H0 6 k1, for all t > t0,

where k1 =

(
δ
γ̃

) 1
p−

+

(
γ̃

(
p−−2

2

)
t0

)− 1
p−−2

.

If ‖u(t)‖V0 < 1 we have that ‖u(t)‖H0 6 µ‖u(t)‖V0 < µ.
Let r0 = max{k1, µ}, so

‖u(t)‖H0 6 r0, ∀t > t0,

which concludes the demonstration of item (i).
For item (ii), using Young inequality, we have
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d

dt
ϕ(u) = (∂ϕ(u), ut)H0 = (AH0

0 u, ut)H0 = (B(u)− ut, ut)H0

= (B(u)− ut, ut −B(u))H0 + (B(u)− ut, B(u))H0

6 −‖B(u)− ut‖2
H0

+ ‖B(u)− ut‖H0‖B(u)‖H0

6 −1

2
‖B(u)− ut‖2

H0
+

1

2
‖B(u)‖2

H0

6
1

2
‖B(u)‖2

H0
6

1

2
(LB‖u‖H0 + ‖B(0)‖H0)2.

Which guarantee, through item (i), that
d

dt
ϕ(u) 6

1

2
‖B(u)‖2

H0
6

1

2
k2

2, ∀t > t0,

where k2 := LBr0 + ‖B(0)‖H0 . By the subdifferential definition

1

2

d

dt
‖u‖2

H0
+ ϕ(u) = (ut, u)H0 + ϕ(u)

6 (ut, u)H0 + (∂ϕ(u), u)H0 = (B(u), u)H0

6 ‖B(u)‖H0‖u‖H0 6 k2r0, ∀t > t0.(3.3)

Fixed k > 0 and integrating estimative (3.3) in [t, t+ k], with t > t0, we get∫ t+k

t

k2r0 ds >
1

2
‖u(t+ k)‖2

H0
− 1

2
‖u(t)‖2

H0
+

∫ t+k

t

ϕ(u) ds.

Therefore, ∫ t+k

t

ϕ(u) ds 6
1

2
‖u(t+ k)‖2

H0
+

∫ t+k

t

ϕ(u) ds

6
1

2
‖u(t)‖2

H0
+

∫ t+k

t

k2r0 ds

6
1

2
r2

0 + kk2r0 := k3.

Using the Uniform Grönwall-Belman Lemma, Lemma 1.1 in [13], for y = ϕ(u), g = 0 and
h = 1

2
k2

2 we conclude that

(3.4) ϕ(u(t+ k)) 6
k3

k
+

1

2
k2

2k := k4, ∀t > t0.

Then, from (2.7) and (3.4), we concluded that
1

p+
min{m0, 1}(ρ(u) + ρ(|∇u|)) 6

∫
Ω

1

p+
|u(t, x)|p(x) dx+

∫
Ω1

m0
1

p+
|∇u(t, x)|p(x) dx

6
∫

Ω

1

p(x)
|u(t, x)|p(x) dx+

∫
Ω1

d0(x)
1

p(x)
|∇u(t, x)|p(x) dx

6 ϕ(u(t)) 6 k4, ∀t > t0 + k.(3.5)
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In the case where ‖u(t)‖V0 6 1, there is nothing to demonstrate. If ‖u(t)‖V0 > 1, then we will
analyze the following cases:

(a) If ‖u‖p(x) 6 1 and ‖∇u‖p(x) > 1. It follows from Proposition 2.1, that

‖u‖p
+

p(x) 6 ρ(u) 6 ‖u‖p
−

p(x) and ‖∇u‖p
−

p(x) 6 ρ(|∇u|) 6 ‖∇u‖p
+

p(x).

so
‖u‖p

+

p(x) 6 ρ(u) + ρ(|∇u|) and ‖∇u‖p
−

p(x) 6 ρ(u) + ρ(|∇u|).
It follows from (3.5) that

‖u‖V0 =‖u‖p(x) + ‖∇u‖p(x)

6(ρ(u) + ρ(|∇u|))
1
p+ + (ρ(u) + ρ(|∇u|))

1
p−

6

(
p+k4

min{m0, 1}

) 1
p+

+

(
p+k4

min{m0, 1}

) 1
p−

,∀t > t0 + k.

(b) If ‖u‖p(x) > 1 and ‖∇u‖p(x) 6 1.
It follows analogously from item (a), that is,

‖u‖V0 6(ρ(u) + ρ(|∇u|))
1
p− + (ρ(u) + ρ(|∇u|))

1
p+

6

(
p+k4

min{m0, 1}

) 1
p−

+

(
p+k4

min{m0, 1}

) 1
p+

,∀t > t0 + k.

(c) If ‖u‖p(x) > 1 and ‖∇u‖p(x) > 1. Again, by Proposition 2.1, we have that

‖u‖p
−

p(x) 6 ρ(u) 6 ‖u‖p
+

p(x) and ‖∇u‖p
−

p(x) 6 ρ(|∇u|) 6 ‖∇u‖p
+

p(x).

Then,

‖u‖p
−

V0
6 2p

−
(‖u‖p

−

p(x) + ‖∇u‖p
−

p(x)) 6 2p
−

(ρ(u) + ρ(|∇u|)).
It follows from (3.5) that

‖u‖V0 6 2

(
p+k4

min{m0, 1}

) 1
p−

, ∀t > t0 + k.

(d) If ‖u‖p(x) 6 1 and ‖∇u‖p(x) 6 1.
It follows analogously from item (c), just change p− for p+. In this case, we have

‖u‖V0 6 2

(
p+k4

min{m0, 1}

) 1
p+

, ∀t > t0 + k.

Therefore, for all t > t1 := t0 + k, we conclude that

‖u(t)‖V0 6 max

{
2

[(
p+k4

min{m0, 1}

) 1
p+

+

(
p+k4

min{m0, 1}

) 1
p−
]
, 1

}
=: r1.

Where uλ is the strong solution of (2.8), we can estimate by the same constants, that is, rλ0 = r0

and rλ = r1, for all λ ∈ (0, 1]. That is, we obtain uniform estimates in λ ∈ (0, 1].
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�

Lemma 3.2. Let u be the strong solution of (2.9), with u(0) = u0 ∈ V0, and T > 0. There exists
constant R > 0, depending on ‖u0‖V0 , such that ‖u(t)‖V0 6 R, for all 0 6 t 6 T .

Besides, if uλ is the strong solution of (2.8), with uλ(0) = uλ0 ∈ V , there exists Rλ > 0,
depending on ‖uλ0‖V , such that ‖u(t)‖V 6 Rλ, for all 0 6 t 6 T .

Proof. Initially, we will show that there existsR0 > 0, depending on ‖u0‖H0 , such that ‖u(t)‖H0 6
R0, for all t > 0. We note that for initial data in bounded subsets of H0, we have R0 uniformly
defined.

Through Lemma 3.1, there exist t0 > 0 and r0 > 0 such that ‖u(t)‖H0 6 r0, for all t > t0. Let
0 < t 6 t0 and s ∈ (0, t), proceeding as in (3.1) and using Young inequality, we can conclude

1

2

d

dt
‖u(s)‖2

H0
6 LB‖u(s)‖2

H0
+ ‖B(0)‖H0‖u(s)‖H0

6

(
LB +

1

2

)
‖u(s)‖2

H0
+

1

2
‖B(0)‖2

H0

6 max

{
LB +

1

2
,
1

2
‖B(0)‖2

H0

}
(‖u(s)‖2

H0
+ 1).

Let c1 = max
{
LB + 1

2
, 1

2
‖B(0)‖2

H0

}
. Integrating this last inequality to s varying in interval [0, t],

we have

‖u(t)‖2
H0
− ‖u(0)‖2

H0
6 2c1

∫ t

0

(‖u(s)‖2
H0

+ 1)ds, ∀t ∈ [0, t0].

Applying the Grönwall-Bellman Lemma for φ(t) = ‖u(t)‖2
H0

+ 1, we conclude that

‖u(t)‖H0 6
√

(‖u(0)‖2
H0

+ 1)e2c1t0 − 1, ∀t ∈ [0, t0].

Therefore,

(3.6) ‖u(t)‖H0 6 R0, ∀t > 0,

where R0 = max
{√

(‖u(0)‖2
H0

+ 1)e2c1t0 − 1, r0

}
. More precisely,

R0 = max

{√
(‖u(0)‖2

H0
+ 1)e2c1t0 − 1,

(
δ

γ̃

) 1
p−

+

(
γ̃

(
p− − 2

2

)
t0

)− 1
p−−2

, µ

}
,

where t0 is a real fixed positive and µ = |Ω|+ 1.
Again, through Lemma 3.1, using (3.6), we have that

d

dt
ϕ(u) 6

1

2
(LB‖u‖H0 + ‖B(0)‖H0)2 6

1

2
K2

2 , ∀t > 0,

where K2 := LBR0 + ‖B(0)‖H0 .
Let t > 0. Integrating the previous inequality in (0, t), we obtain

(3.7) ϕ(u(t)) 6 ϕ(u0) +
T

2
K2

2 , ∀ 0 6 t 6 T.
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In turn,

ϕ(u0) =

∫
Ω1

d0(x)

p(x)
|∇u0|p(x) dx+

∫
Ω1

d0(x)η

2
|∇u0|2 dx+

∫
Ω

1

p(x)
|u0|p(x) dx

6
∫

Ω1

M0

p−
|∇u0|p(x) dx+

∫
Ω1

M0η

2
|∇u0|2 dx+

∫
Ω

1

p−
|u0|p(x) dx

=
M0

p−
ρp(|∇u0|) +

M0η

2
‖∇u0‖2

L2(Ω1) +
1

p−
ρp(u0).

We will analyze four cases.

(i) If ‖∇u0‖Lp(x)(Ω1) 6 1 and ‖u0‖Lp(x)(Ω1) 6 1, since Lp(x)(Ω1) ↪→ L2(Ω1), we have

‖∇u0‖L2(Ω1) 6 µ‖∇u0‖Lp(x)(Ω1) 6 µ.

Thus,

ϕ(u0) 6
M0

p−
‖∇u0‖p

−

Lp(x)(Ω1)
+
M0η

2
µ2 +

1

p−
‖u0‖p

−

Lp(x)(Ω1)
6
M0

p−
+
M0ηµ

2

2
+

1

p−
.

Since ‖u0‖V0 6 2, it follows that

1 6
‖u0‖p

+

V0

2p+ 6
‖u0‖p

+

V0

2
6 2‖u0‖p

+

V0
6 2(‖u0‖p

+

V0
+ 1).

Therefore,

ϕ(u0) 6
M0

p−
+
M0ηµ

2

2
+

1

p−
6 2

(
M0

p−
+
M0ηµ

2

2
+

1

p−

)
(‖u0‖p

+

V0
+ 1).

(ii) If ‖∇u0‖Lp(x)(Ω1) 6 1 and ‖u0‖Lp(x)(Ω1) > 1, since Lp(x)(Ω1) ↪→ L2(Ω1), we have

‖∇u0‖L2(Ω1) 6 µ‖∇u0‖Lp(x)(Ω1) 6 µ.

Thus,

ϕ(u0) 6
M0

p−
‖∇u0‖p

−

Lp(x)(Ω1)
+
M0η

2
µ2 +

1

p−
‖u0‖p

+

Lp(x)(Ω1)

6
M0

p−
+
M0ηµ

2

2
+

1

p−
‖u0‖p

+

Lp(x)(Ω1)

6 2

(
M0

p−
+
M0ηµ

2

2
+

1

p−

)
(‖u0‖p

+

V0
+ 1).

(iii) If ‖∇u0‖Lp(x)(Ω1) > 1 and ‖u0‖Lp(x)(Ω1) 6 1, since Lp(x)(Ω1) ↪→ L2(Ω1), we have

‖∇u0‖L2(Ω1) 6 µ‖∇u0‖Lp(x)(Ω1).
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Thus,

ϕ(u0) 6
M0

p−
‖∇u0‖p

+

Lp(x)(Ω1)
+
M0η

2
‖∇u0‖2

L2(Ω1) +
1

p−
‖u0‖p

−

Lp(x)(Ω1)

6

(
M0

p−
+
M0ηµ

2

2

)
‖∇u0‖p

+

Lp(x)(Ω1)
+

1

p−

6

(
M0

p−
+
M0ηµ

2

2

)
‖u0‖p

+

V0
+

1

p−

6 2

(
M0

p−
+
M0ηµ

2

2
+

1

p−

)
(‖u0‖p

+

V0
+ 1).

(iv) If ‖∇u0‖Lp(x)(Ω1) > 1 and ‖u0‖Lp(x)(Ω1) > 1, by inclusion Lp(x)(Ω1) ↪→ L2(Ω1), we have

ϕ(u0) 6
M0

p−
‖∇u0‖p

+

Lp(x)(Ω1)
+
M0η

2
‖∇u0‖2

L2(Ω1) +
1

p−
‖u0‖p

+

Lp(x)(Ω1)

6
M0

p−
‖∇u0‖p

+

Lp(x)(Ω1)
+
M0ηµ

2

2
‖∇u0‖2

Lp(x)(Ω1) +
1

p−
‖u0‖p

+

Lp(x)(Ω1)
.

Since ‖∇u0‖p(x) > 1 then ‖∇u0‖p
+

Lp(x)(Ω1)
> ‖∇u0‖2

Lp(x)(Ω1)
.

Therefore,

ϕ(u0) 6
M0

p−
‖∇u0‖p

+

Lp(x)(Ω1)
+
M0ηµ

2

2
‖∇u0‖p

+

Lp(x)(Ω1)
+

1

p−
‖u0‖p

+

Lp(x)(Ω1)

6 max

{
M0

p−
+
M0ηµ

2

2
,

1

p−

}
(‖∇u0‖p

+

Lp(x)(Ω1)
+ ‖u0‖p

+

Lp(x)(Ω1)
)

6 max

{
M0

p−
+
M0ηµ

2

2
,

1

p−

}
2(‖∇u0‖Lp(x)(Ω1) + ‖u0‖Lp(x)(Ω1))

p+

6 2

(
M0

p−
+
M0ηµ

2

2
+

1

p−

)
(‖u0‖p

+

V0
+ 1).

We obtain the same conclusion in all cases

(3.8) ϕ(u0) 6 2

(
M0

p−
+
M0ηµ

2

2
+

1

p−

)
(‖u0‖p

+

V0
+ 1) := K3.

Returning to (3.7), we have

ϕ(u(t)) 6 K3 +
T

2
K2

2 := K4, ∀ t ∈ [0, T ].

The same way that it was made in (3.5), we can conclude that

1

p+
min{m0, 1}(ρ(u) + ρ(|∇u|)) 6 ϕ(u(t)) 6 K4, ∀ t ∈ [0, T ].
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Proceeding as in the analysis of cases (a)-(b)-(c)-(d) of Lemma 3.1, having t0 = 0 and replacing
k4 for K4, we obtain

‖u(t)‖V0 6 max

{
2

[(
p+K4

min{m0, 1}

) 1
p+

+

(
p+K4

min{m0, 1}

) 1
p−
]
, 1

}
:= R, 0 6 t 6 T.

The demonstration for uλ strong solution of (2.8) can be made in an analogous way. In that case,
besides de dependency on ‖uλ0‖V , the constant R > 0 is written in terms of constant Mλ, that is,
the estimative is not uniform in λ varying in interval (0, 1]. �

This last Lemma allows us to conclude that a given T > 0 and a bounded D ⊂ V0, the set⋃
t∈[0,T ]

T0(t)D is bounded in V0. Analogously, for each λ ∈ (0, 1],
⋃

t∈[0,T ]

Tλ(t)D is bounded in V ,

being D ⊂ V bounded.

Lemma 3.3. Let u be the strong solution of (2.9) and T > 0. There exists constant C1 > 0,
depending on T and on ‖u0‖H0 , such that∫ T

0

∫
Ω1

|∇u(t, x)|p(x)dxdt 6 C1.

We obtain the same conclusion if uλ is the strong solution of (2.8), where λ ∈ (0, 1]. More
precisely, for each λ ∈ (0, 1], there exists Cλ

1 > 0, depending on T and on ‖uλ0‖H , such that∫ T

0

∫
Ω

|∇uλ(t, x)|p(x)dxdt 6 Cλ
1 .

Proof. Let u be the strong solution of (2.9). Using (3.1), (2.3) and the Young inequality, we obtain

1

2

d

dt
‖u‖2

H0
+

∫
Ω1

d0(x)|∇u|p(x) dx+

∫
Ω1

d0(x)η|∇u|2 dx+

∫
Ω

|u|p(x) dx

6 (‖B(u)−B(0)‖H0 + ‖B(0)‖H0)‖u‖H0

6 LB‖u‖2
H0

+
1

2
‖B(0)‖2

H0
+

1

2
‖u‖2

H0
.(3.9)

Since
∫

Ω1

d0(x)η|∇u|2 dx > m0η‖∇u‖2
L2(Ω1) > 0 and ρ(u) =

∫
Ω

|u|p(x) dx > 0, we have

(3.10)
1

2

d

dt
‖u‖2

H0
+m0

∫
Ω1

|∇u|p(x) dx 6

(
LB +

1

2

)
‖u‖2

H0
+

1

2
‖B(0)‖2

H0
.

Integrating (3.10) with respect to t ∈ [0, T ], it follows that

‖u(T )‖2
H0

+ 2m0

∫ T

0

∫
Ω1

|∇u(t)|p(x) dx dt

6 2

(
LB +

1

2

)∫ T

0

‖u(t)‖2
H0
dt+ ‖B(0)‖2

H0
T + ‖u0‖2

H0
,
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that is,

(3.11) 2m0

∫ T

0

∫
Ω1

|∇u(t)|p(x) dx dt 6 (2LB + 1)

∫ T

0

‖u(t)‖2
H0
dt+ ‖B(0)‖2

H0
T + ‖u0‖2

H0
.

Neglecting the second term on the left side of (3.10), once ρ(|∇u|) > 0, and integrating under
[0, t], where 0 < t < T, we obtain

‖u(t)‖2
H0
6 ‖u0‖2

H0
+ ‖B(0)‖2

H0
T + (2LB + 1)

∫ t

0

‖u(θ)‖2
H0
dθ.

Using the Grönwal-Belmann Lemma

(3.12) ‖u(t)‖2
H0
6 (‖u0‖2

H0
+ ‖B(0)‖2

H0
T )e(2LB+1)t, for all t ∈ [0, T ].

Integrating this last inequality with respect to t ∈ [0, T ], we conclude∫ T

0

‖u(t)‖2
H0
dt 6

1

(2LB + 1)
(‖u0‖2

H0
+ ‖B(0)‖2

H0
T )(e(2LB+1)T − 1).

Therefore, returning to equation (3.11),

2m0

∫ T

0

∫
Ω1

|∇u(t)|p(x) dx dt 6 (‖u0‖2
H0

+ ‖B(0)‖2
H0
T )e(2LB+1)T ,

which concludes the demonstration. �

Lemma 3.4. Let T > 0. If u is the weak solution of (2.9) in [0, T ] then there exists constant
k0 = k0(‖u(0)‖H0 , T ) > 0, such that∫ T

0

‖B(u(t))‖2
H0
dt 6 k0.

We obtain the same conclusion if uλ is the weak solution of (2.8) in [0, T ], where λ ∈ [0, 1). More
precisely, for each λ ∈ (0, 1], there exists kλ0 = kλ0 (‖uλ(0)‖H , T ) > 0, such that∫ T

0

‖B(uλ(t))‖2
H dt 6 kλ0 .

Proof. Being u the weak solution of (2.9), there exists a sequence (ui)i∈N of strong solution of
(2.9) such that

‖u− ui‖C([0,T ];H0)
i→∞−−−→ 0.

For each i ∈ N, proceeding as in Lemma 3.3 to conclude (3.12), we obtain

‖ui(t)‖H0 6
√
‖ui(0)‖2

H0
+ T‖B(0)‖2

H0
e(LB+ 1

2
)T , ∀t ∈ [0, T ], ∀i ∈ N.

Consequently,

‖u‖C([0,T ];H0) 6 ‖u− ui‖C([0,T ];H0) + ‖ui(0)‖H0e
(LB+ 1

2
)T +

√
T‖B(0)‖H0e

(LB+ 1
2

)T ,

making i→∞, we have

‖u‖C([0,T ];H0) 6 ‖u(0)‖H0e
(LB+ 1

2
)T +

√
T‖B(0)‖H0e

(LB+ 1
2

)T := const(‖u(0)‖H0 , T ).(3.13)



20 V. L. CARBONE AND T. R. S. COUTO

Defining k0 := 2L2
BT (const(‖u(0)‖H0 , T ))2 + 2T‖B(0)‖2

H0
and using (3.13), we obtain∫ T

0

‖B(u(t))‖2
H0
dt 6

∫ T

0

(‖B(u(t))−B(0)‖H0 + ‖B(0)‖H0)2 dt

62L2
B

∫ T

0

‖u(t)‖2
H0
dt+ 2‖B(0)‖2

H0
T

62L2
BT‖u‖2

C([0,T ];H0) + 2‖B(0)‖2
H0
T

6k0.

�

4. EXISTENCE OF EXPONENTIAL ATTRACTOR VIA L-TRAJECTORY METHOD

The aim of this section is to demonstrate that (Tλ(t), H) has an exponential attractor, for all
λ ∈ [0, 1]. In particular, this implies that (Tλ(t), H) has a global attractor with finite fractal
dimension, for all λ ∈ [0, 1].

Let r be a positive constant obtained in item (ii) of Lemma 3.1, associated with t0 = 1 and
k = 1. We consider the set

(4.1) B1 = {u ∈ V0; ‖u‖p(x) 6 r and ‖∇u‖p(x) 6 r}.
Let u be a weak solution of (2.9), with u(0) ∈ V0. From (2.7), we have

D(ϕ) := {u ∈ H0;ϕ(u) < +∞} = V0.

Using Lemma 3.4, we can apply Theorem 3.6 from [8] for H = H0, φ = ϕ and f = B(u). Since
u(0) ∈ D(ϕ), we conclude that t 7→ ϕ(u(t)) is absolutely continuous in [0, T ], where T > 0 is
arbitrary fixed. In particular ϕ(u(t)) is bounded, for all t ∈ [0, T ], that is, u(t) ∈ D(ϕ) = V0, for
all t ∈ [0, T ]. Therefore T0(t)u0 = u(t) ∈ V0, for all t > 0. Then,

(4.2) T0(t)V0 ⊂ V0, ∀t > 0.

It follows from Theorem 3.6 from [8] that u is the strong solution of (2.9). Thus, through the
demonstration of Lemma 3.1, fixing positive values t0 = 1 and k = 1, we have that

‖u(t)‖V0 6 r, ∀t > 2.

So, ‖u(t)‖p(x) 6 r and ‖∇u(t)‖p(x) 6 r, for all t > 2. Therefore, since B1 ⊂ V0, we have

(4.3) T0(t)B1 ⊂ T0(t)V0 ⊂ B1, for all t > 2.

We define

(4.4) B0 =
⋃
t∈[0,2]

T0(t)B1.

We observe that B0 ⊂ V0. Indeed, given u ∈ B0 arbitrary, there exist t̃ ∈ [0, 2] and b1 ∈ B1 such
that u = T0(t̃)b1. Since B1 ⊂ V0, then u = T0(t̃)b1 ∈ T0(t̃)V0. For (4.2), we have that u ∈ V0.

For λ ∈ (0, 1], we consider Bλ
1 = {u ∈ V ; ‖u‖p(x) 6 r and ‖∇u‖p(x) 6 r} and

(4.5) Bλ
0 =

⋃
t∈[0,2]

Tλ(t)B
λ
1 .
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We note that B1 ⊂ BV0(0, 2r) and Bλ
1 ⊂ BV (0, 2r), for each λ ∈ (0, 1], then B1 and Bλ

1 are
bounded sets in V0. Therefore, by Lemma 3.2, B0 is bounded in V0 and, for each λ ∈ (0, 1], Bλ

0 is
bounded in V .

Lemma 4.1. Set B0, defined in (4.4), is a compact subset of H0. Moreover, B0 is positively
invariant with respect to {T0(t)}t>0.

For each λ ∈ (0, 1], setBλ
0 , defined in (4.5), is a compact subset ofH . Moreover,Bλ

0 is positively
invariant with respect to {Tλ(t)}t>0.

Proof. First of all, we will verify that B0 is positively invariant with respect to {T0(t)}t>0. Let
τ > 0 be arbitrary, we have that

T0(τ)B0 =
⋃
t∈[0,2]

T0(t)T0(τ)B1.

If τ > 2, from (4.3), we have

(4.6) T0(τ)B0 ⊂
⋃
t∈[0,2]

T0(t)B1 = B0, ∀τ > 2.

Now, if 0 6 τ < 2, then 0 < 2− τ 6 2. Hence, we can write

T0(τ)B0 =

 ⋃
t∈[0,2−τ ]

T0(t+ τ)B1

 ∪
 ⋃
t∈[2−τ,2]

T0(t+ τ)B1

 , ∀ 0 6 τ < 2.(4.7)

For t ∈ [0, 2− τ ] we have τ 6 t+ τ 6 2, that is, 0 6 t+ τ 6 2. Therefore,

(4.8)
⋃

t∈[0,2−τ ]

T0(t+ τ)B1 ⊂
⋃

t+τ∈[0,2]

T0(t+ τ)B1 = B0.

For t ∈ [2− τ, 2] we have t+ τ > 2, then from (4.3) we have

(4.9)
⋃

t∈[2−τ,2]

T0(t+ τ)B1 ⊂ B1 ⊂
⋃
t∈[0,2]

T0(t)B1 = B0.

Substituting (4.8) and (4.9) in (4.7), we conclude that T0(τ)B0 ⊂ B0, for all 0 6 τ < 2.
Together with (4.6), we have T0(τ)B0 ⊂ B0, for all τ > 0.

Now, we will demonstrate the compactness of B0. Clearly B1 is a bounded subset of V0, since
V0 ↪→↪→ H0, we have B1

H0 compact in H0.
In turn, B1 is a closed subset in H0. In fact, consider (ui)i∈N a sequence in B1 and u ∈ H0, such

that

(4.10) ‖ui − u‖H0

i→∞−−−→ 0.

Since (ui)i∈Nis a bounded sequence in the reflexive space V0, then (ui)i∈N admits subsequence,
(uik)k∈N, that weakly converges to V0, that is, there exists ũ ∈ V0 such that

(f, uik − ũ)H0 = 〈f, uik − ũ〉V ′0 ,V0

k→∞−−−→ 0, ∀f ∈ V ′0 .
Therefore,

uik
k→∞−−−⇀ ũ, in H0.
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Now, by convergence in (4.10), we have that uik
k→∞−−−⇀ u in H0, so ũ = u. Then, u ∈ V0.

We must still show that ‖u‖p(x) 6 r and ‖∇u‖p(x) 6 r. It follows from Theorem 4.9 in [23],
restricting to a subsequence if necessary, which we will still denote by (ui)i∈N, that

ui(x)
i→∞−−−→ u(x), almost everywhere in Ω.

Thus, for 0 <
ε

|Ω|
< 1 there exists i0 ∈ N such that

|ui(x)− u(x)| < ε

|Ω|
, for all i > i0 and for almost every x ∈ Ω.

Since p(x) > p− > 2 > 1, it follows that

ρ(ui − u) =

∫
Ω

|ui(x)− u(x)|p(x) dx 6
∫

Ω

(
ε

|Ω|

)p(x)

dx 6
∫

Ω

ε

|Ω|
dx = ε, ∀i > i0.

Therefore, for all i > i0, we have ρ(ui − u)
1
p∓ 6 ε

1
p∓ . For all i > i0, it follows from (2.1), that

‖u‖p(x) 6 ‖ui − u‖p(x) + ‖ui‖p(x) 6 max{ε
1
p− , ε

1
p+ }+ r,

as ε is arbitrarily small we concluded that ‖u‖p(x) 6 r.
We observe that (∇ui)i∈N is a bounded sequence in Lp(x)(Ω,Rn), since Lp(x)(Ω,Rn) is a

reflexive space, passing through a subsequence if necessary, which we will denote by (∇ui)i∈N,
there exists v ∈ Lp(x)(Ω,Rn) such that

∇ui
i→∞−−−⇀ v.

Thus, ‖v‖p(x) 6 lim infi→∞ ‖∇ui‖p(x) 6 r. We must just conclude that v = ∇u, for which,
consider φ ∈ C∞c (Ω) arbitrary, it is possible to conclude through the inequality of Hölder and by
(4.10), that

(4.11)
∫

Ω

ui
∂φ

∂xj
dx

i→∞−−−→
∫

Ω

u
∂φ

∂xj
dx.

Besides this, since∇ui
i→∞−−−⇀ v, we have

(4.12)
∫

Ω

∂ui
∂xj

φ dx
i→∞−−−→

∫
Ω

vjφ dx.

So, it follows from (4.11) and (4.12), that∫
Ω

u
∂φ

∂xj
dx = −

∫
Ω

vjφ dx.

That is,
∂u

∂xj
= vj for all j = 1, . . . , n.

Therefore, u ∈ B1 and B1 is closed in H0. With that, B1 is compact in H0 and, consequently,
[0, 2] × B1 is compact in R+ ×H0. For operator continuity R+ ×H0 3 (t, u0) 7→ T0(t)u0 ∈ H0,
we conclude that B0 = T0([0, 2])B1 is compact.

The conclusion for Bλ
0 , with λ ∈ (0, 1], follows analogously. �
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For each λ ∈ (0, 1], we will denote by Xλ the set of 1-trajectories associated with (2.8), that
is, the set of all weak solutions of (2.8) defined in interval [0, 1], equipped with space topology
L2(0, 1;H).

Let λ ∈ [0, 1]. If λ ∈ (0, 1], we will consider {Lλ(t)}t>0 the shift semigroup of 1-trajectories,
that is,

Lλ(t) : Xλ → Xλ

χ 7→ Lλ(t)χ : [0, 1]→ H
θ 7→ uλ(t+ θ),

where uλ is the only weak solution of (2.8) with χ = uλ|[0,1]. If λ = 0, X0 = X denote the set
of 1-trajectories, that is, the set of all weak solutions of (2.9) defined in interval [0, 1], equipped
with space topology L2(0, 1;H0) and {L0(t) = L(t)}t>0 the shift semigroup of 1-trajectories,
L(t)χ : [0, 1]→ H0, θ 7→ u(t+ θ) where u is the only weak solution of (2.9) with χ = u|[0,1].

We define

(4.13) B0 = {χ ∈ X;χ(0) ∈ B0}
and

(4.14) Bλ0 = {χ ∈ Xλ;χ(0) ∈ Bλ
0 },

for all λ ∈ (0, 1].

Lemma 4.2. Set B0, defined in (4.13), is compact in L2(0, 1;H0) and positively invariant with
respect to {L(t)}t>0. For each λ ∈ (0, 1], set Bλ0 , defined in (4.14), is compact in L2(0, 1;H) and
positively invariant with respect to {Lλ(t)}t>0.

Proof. Initially, we will verify that B0 is positively invariant with respect to {L(t)}t>0. Let χ ∈ B0

and τ > 0, we have that
(L(τ)χ)(s) = u(τ + s), ∀s ∈ [0, 1],

where u is the only weak solution of (2.9) in [0, τ + 1] such that χ = u|[0,1].
From Lemma 4.1, (L(τ)χ)(0) = u(τ) ∈ B0, for each τ > 0, implying that L(τ)χ ∈ B0, for

τ > 0. Hence, L(τ)(B0) ⊂ B0, for all τ > 0.
To check compactness, we first show that B0 is bounded in

{u ∈ L2(0, 1;V0); ut ∈ L2(0, 1;H0)}.
In fact, given χ ∈ B0 arbitrary, there exists u solution of (2.9), such that χ(t) = u(t), for all
t ∈ [0, 1], where u0 = χ(0) ∈ B0 ⊂ V0 = D(ϕ). By Theorem 3.6 from [8],

‖χt‖2
L2(0,1;H0) 6

[(∫ 1

0

‖B(u(t))‖2
H0
dt

) 1
2

+
√
ϕ(u(0))

]2

.

By consequence of Lemma 3.4 and from the inequality (3.8), there exists a constant k5 > 0 such
that

‖χt‖2
L2(0,1;H0) 6

[(∫ 1

0

‖B(u(t))‖2
H0
dt

) 1
2

+
√
ϕ(u(0))

]2

6 k5, ∀χ ∈ B0,

it suffices to consider k5 := 2(k0 + K3). We note that k5 is uniform with respect to initial data
u0 = χ(0) ∈ B0, since from Lemma 3.2, B0 is a bounded subset V0.
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Moreover, from Poincaré inequality, there exist C2 > 0 such that

‖χ‖2
L2(0,1;V0) =

∫ 1

0

(‖χ(t)‖p(x) + ‖∇χ(t)‖p(x))
2 dt 6 C2

∫ 1

0

‖∇u(t)‖2
p(x) dt.(4.15)

We will consider the case where ‖∇u(t)‖p(x) > 1. Since 2 < p− 6 p(x) it follows from Proposi-
tion 2.1 that

‖∇u(t)‖2
p(x) 6 ‖∇u(t)‖p

−

p(x) 6 ρp(∇u(t)).

Thus, returning to (4.15) and applying Lemma 3.3, we have that there exists C1 > 0 such that

‖χ‖2
L2(0,1;V0) 6 C2

∫ 1

0

∫
Ω

|∇u(t)|p(x) dxdt 6 C2C1.

We note that the constant C1 = C1(‖u0‖H0) is uniform with respect to initial data u0 = χ(0) ∈ B0,
since from Lemma 4.1, B0 is a bounded subset of H0.

The case where ‖∇u(t)‖p(x) 6 1, we have from (4.15) that ‖χ‖2
L2(0,1;V0) 6 C2. Therefore,

‖χ‖2
L2(0,1;V0) 6 min {C2, C1C2} , ∀χ ∈ B0.

Since V0 ↪→↪→ H0, from Lemma 2.1 we have that

{u ∈ L2(0, 1;V0);ut ∈ L2(0, 1;H0)} ↪→↪→ L2(0, 1;H0).

So, B0
L2(0,1;H0)

is compact in L2(0, 1;H0).

In turn, B0 is closed L2(0, 1;H0). Indeed, let χ ∈ B0
L2(0,1;H0)

arbitrary, so there exists (χi)i∈N
in B0 such that

(4.16) ‖χi − χ‖L2(0,1;H0)
i→∞−−−→ 0.

For all i ∈ N, we have that χi ∈ B0, that is, χi is the weak solution of (2.9), in [0, 1], with
χi(0) ∈ B0. In particular χi ∈ C([0, 1];H0), so B(χi) ∈ C([0, 1];H0), for all i ∈ N.

Let i, j ∈ N, i 6= j, applying Lemma 3.1 from [8] for u = χj , v = χi, A = AH0
0 , f = B(χj)

and g = B(χi), we have

‖χj(t)− χi(t)‖H0 6 ‖χj(0)− χi(0)‖H0 + LB

∫ t

0

‖χj(s)− χi(s)‖H0 ds,

for all t ∈ [0, 1]. Through Grönwall-Bellman Lemma, we concluded that

‖χj(t)− χi(t)‖H0 6 ‖χj(0)− χi(0)‖H0e
LB , ∀t ∈ [0, 1], ∀i, j ∈ N.(4.17)

In turn, (χi(0))i∈N is a sequence in B0 that from Lemma 4.1, is a compact set of H0. Then,
(χi(0))i∈N admits subsequence, (χik(0))k∈N, converging inH0, in particular (χik(0))k∈N is a Cauchy
sequence in H0. Therefore, in (4.17), we have

sup
t∈[0,1]

‖χik+1
(t)− χik(t)‖H0 6 eLB‖χik+1

(0)− χik(0)‖H0

k→∞−−−→ 0.

That is, (χik)k∈N is a Cauchy sequence in C([0, 1];H0). Since C([0, 1];H0) is a complete space,
restricting to a subsequence if necessary, there exists χ̃ ∈ C([0, 1];H0) such that

(4.18) ‖χik − χ̃‖C([0,1];H0)
k→∞−−−→ 0.
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Besides,

‖χik − χ̃‖L2(0,1;H0) 6 ‖χik − χ̃‖C([0,1];H0)
k→∞−−−→ 0.

It follows from (4.16) that χ̃ = χ, then χ ∈ C([0, 1];H0).
Since (χik)k∈N is a sequence of weak solutions of (2.9) in [0, 1], it is possible to conclude that

there is a sequence of strong solutions that converge to χ in C([0, 1];H0). So, χ is a weak solution
of (2.9) in [0, 1]. We still have, from (4.18), that χ(0) ∈ B0

H0
= B0. Therefore, χ ∈ B0 and with

that B0 is closed in L2(0, 1;H0), therefore we have the compactness of B0.
The demonstration can be made analogously for Bλ0 , where λ ∈ (0, 1].

�

Let W 1,2
Ω0,0

(Ω) = {f ∈ W 1,2
0 (Ω); f is constant in Ω0}. We will consider the sets

Y0 =

{
χ ∈ L2(0, 1;W 1,2

Ω0,0
(Ω));

dχ

dt
∈ L2(0, 1;V

′

0 )

}
and

Y =

{
χ ∈ L2(0, 1;W 1,2

0 (Ω));
dχ

dt
∈ L2(0, 1;V ′)

}
.

From Lemma 2.1, we obtain the following compact inclusions, Y0 ↪→↪→ L2(0, 1;H0) and
Y ↪→↪→ L2(0, 1;H). We provide Y , and Y0, with the following norm

‖u‖Y = ‖∇u‖L2(0,1;H) + ‖ut‖L2(0,1;V ′).

In particular, if u ∈ Y0 we have

‖u‖Y0 = ‖∇u‖L2(0,1;H0) + ‖ut‖L2(0,1;V ′0).

In the next result we will demonstrate the Lipschitz property for operators
L(1) : L2(0, 1;H0)→ Y0, in B0, and Lλ(1) : L2(0, 1;H)→ Y , in Bλ0 , for all λ ∈ (0, 1].

Lemma 4.3. There exist constants ω1 > 0 and ωλ1 > 0 such that

‖L(1)χ1 − L(1)χ2‖Y0 6 ω1‖χ1 − χ2‖L2(0,1;H0), ∀χ1, χ2 ∈ B0,

‖Lλ(1)χ1 − Lλ(1)χ2‖Y 6 ωλ1‖χ1 − χ2‖L2(0,1;H), ∀χ1, χ2 ∈ Bλ0 .

Proof. We will prove the Lipschitz property for L(1) : L2(0, 1;H0) → Y0, in B0. The demonstra-
tion for operators Lλ(1) : L2(0, 1;H)→ Y , where λ ∈ (0, 1], can be made analogously.

Let χ1, χ2 ∈ B0 be arbitraries, so there exist only u and v strong solutions of (2.9) such that
u|[0,1] = χ1 and v|[0,1] = χ2. We have that

ut + AH0
0 u = Bu and vt + AH0

0 v = Bv,

making the difference of the equations and denoting w = u− v, we can write

(4.19) wt + AH0
0 u− AH0

0 v = Bu−Bv.



26 V. L. CARBONE AND T. R. S. COUTO

Consider ψ ∈ V0 = W
1,p(x)
Ω0,0

(Ω), we have

|(wt, ψ)H0| 6 |(AH0
0 u− AH0

0 v, ψ)H0|+ |(Bu−Bv, ψ)H0|

6

∣∣∣∣ ∫
Ω1

d0(x)

[
(|∇u|p(x)−2 + η)∇u− (|∇v|p(x)−2 + η)∇v

]
∇ψ dx

∣∣∣∣
+

∣∣∣∣∫
Ω

(|u|p(x)−2u− |v|p(x)−2v)ψ dx

∣∣∣∣+ ‖Bu−Bv‖H0‖ψ‖H0

6M0

∫
Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇ψ|dx+M0η

∫
Ω1

|∇w||∇ψ|dx

+

∫
Ω

||u|p(x)−2u− |v|p(x)−2v||ψ|dx+ LB‖w‖H0‖ψ‖H0 .(4.20)

Let Ω̃1 := {x ∈ Ω1 : ∇w(t, x) 6= ~0}. It follows from Hölder inequality and from Lemma 2.1 in
[27], with δ = 0, that∫

Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇ψ|dx

=

∫
Ω̃1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇ψ|dx

6

(∫
Ω̃1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇w|dx
) 1

2

(∫
Ω̃1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v|
|∇w|

|∇ψ|2dx
) 1

2

=

(∫
Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇w|dx
) 1

2

(∫
Ω̃1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v|
|∇w|

|∇ψ|2dx
) 1

2

6 4
√
n
√
p+ − 1

(∫
Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇w|dx
) 1

2

(∫
Ω̃1

(|∇u|+ |∇v|)p(x)−2|∇ψ|2dx
) 1

2

.

(4.21)

In turn, from Hölder inequality, we have
(4.22)∫

Ω̃1

(|∇u|+ |∇v|)p(x)−2|∇ψ|2dx 6
(

1

r−
+

1

s−

)
‖|∇ψ|2‖Lr(x)(Ω̃1)‖(|∇u|+ |∇v|)

p(x)−2‖Ls(x)(Ω̃1),
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where r(x) = p(x)
2

and s(x) is obtained through 1
s(x)

+ 1
r(x)

= 1, that is, s(x) = p(x)
p(x)−2

. We observe

that |∇ψ|2 ∈ Lr(x)(Ω̃1) and (|∇u|+ |∇v|)p(x)−2 ∈ Ls(x)(Ω̃1), since ψ, u, v ∈ V0,

(4.23) ρr(|∇ψ|2) =

∫
Ω̃1

|∇ψ|p(x)dx 6
∫

Ω1

|∇ψ|p(x)dx

and

ρs((|∇u|+ |∇v|)p(x)−2) 6
∫

Ω1

(|∇u|+ |∇v|)p(x)dx(4.24)

6 2p
+

(∫
Ω1

|∇u|p(x)dx+

∫
Ω1

|∇v|p(x)dx

)
.

Thus, from (2.1) and (4.23),

‖|∇ψ|2‖Lr(x)(Ω̃1) 6max

{(∫
Ω1

|∇ψ|p(x)dx

) 1
r−

,

(∫
Ω1

|∇ψ|p(x)dx

) 1
r+

}
= max{ρp(∇ψ)

1
r− , ρp(∇ψ)

1
r+ }.(4.25)

From (2.2), it follows that

ρp(∇ψ)
1
r∓ 6 max{(‖∇ψ‖p

−

p(x))
1
r∓ , (‖∇ψ‖p

+

p(x))
1
r∓ }.

Returning to (4.25), we have

‖|∇ψ|2‖Lr(x)(Ω̃1) 6 max{‖∇ψ‖
p−

r−
p(x), ‖∇ψ‖

p+

r−
p(x), ‖∇ψ‖

p−

r+

p(x), ‖∇ψ‖
p+

r+

p(x)} := ξ∇ψ.(4.26)

Analogously, from (2.1), (2.2) and (4.24) we have

‖(|∇u|+|∇v|)p(x)−2‖Ls(x)(Ω̃1)

6max{‖|∇u|+ |∇v|‖
p−

s−
p(x), ‖|∇u|+ |∇v|‖

p+

s−
p(x), ‖|∇u|+ |∇v|‖

p−

s+

p(x), ‖|∇u|+ |∇v|‖
p+

s+

p(x)}
:=ξ|∇u|+|∇v|.(4.27)

Returning to inequality (4.21) and using (4.22), (4.26) and (4.27), we conclude that∫
Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇ψ|dx

6 4
√
n
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ∇ψξ|∇u|+|∇v|

] 1
2
(∫

Ω1

||∇u|p(x)−2∇u− |∇v|p(x)−2∇v||∇w|dx
) 1

2

.

(4.28)

Proceeding in an analogous way, we can conclude that∫
Ω

||u|p(x)−2u−|v|p(x)−2v||ψ|dx

6
√
p+ − 1

[(
1

r−
+

1

s−

)
ξψξ|u|+|v|

] 1
2
(∫

Ω

||u|p(x)−2u− |v|p(x)−2v||w|dx
) 1

2

.(4.29)
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Consider the notations

I(f,g) :=

∫
Ω

||f |p(x)−2f − |g|p(x)−2g||f − g| dx

and

I1(f,g) :=

∫
Ω1

||f |p(x)−2f − |g|p(x)−2g||f − g| dx,

Returning to (4.20), using (4.28), (4.29) and the Hölder inequality, it follows that

|(wt, ψ)H0| 6M0
4
√
n
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ∇ψξ|∇u|+|∇v|

] 1
2(
I1(∇u,∇v)

)1
2

+
√
p+ − 1

[(
1

r−
+

1

s−

)
ξψξ|u|+|v|

] 1
2 (
I(u,v)

) 1
2 +M0η‖∇w‖H0‖∇ψ‖H0

+ LB‖w‖H0‖ψ‖H0 .(4.30)

Since u, v, ψ ∈ V0, p(x) > p− > 2 and |Ω| < ∞, we can conclude that u, v, ψ ∈ W 1,2
0 (Ω).

From Poincaré inequality, there exists α > 0 such that

‖w‖H0 6 α‖∇w‖H0 and ‖ψ‖H0 6 α‖∇ψ‖H0 .

It follows from (4.30) acting in t = 1 + θ, where θ ∈ [0, 1], that

sup
‖ψ‖V0

61

|(wt(1 + θ), ψ)H0|

6M0
4
√
n
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ|∇u(1+θ)|+|∇v(1+θ)|

] 1
2

sup
‖ψ‖V0

61

(ξ∇ψ)
1
2

(
I1(∇u(1+θ),∇v(1+θ))

)1
2

+
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ|u(1+θ)|+|v(1+θ)|

] 1
2

sup
‖ψ‖V0

61

(ξψ)
1
2

(
I(u(1+θ),v(1+θ))

)1
2

+M0η‖∇w(1 + θ)‖H0 sup
‖ψ‖V0

61

‖∇ψ‖H0 +LBα‖∇w(1 + θ)‖H0α sup
‖ψ‖V0

61

‖∇ψ‖H0 .
(4.31)

If ‖ψ‖V0 6 1, then ξ∇ψ 6 1 and ξψ 6 1. Since Lp(x) ↪→ L2, there exists a constant α1 > 0, such
that

‖∇ψ‖H0 6 α1‖∇ψ‖p(x) 6 α1‖ψ‖V0 .
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We conclude, from (4.31), that

sup
‖ψ‖V0

61

|(wt(1 + θ), ψ)H0|

6M0
4
√
n
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ|∇u(1+θ)|+|∇v(1+θ)|

] 1
2 (
I1(∇u(1+θ),∇v(1+θ))

)1
2

+
√
p+ − 1

[(
1

r−
+

1

s−

)
ξ|u(1+θ)|+|v(1+θ)|

] 1
2 (
I(u(1+θ),v(1+θ))

)1
2

+M0ηα1‖∇w(1 + θ)‖H0 + LBα
2α1‖∇w(1 + θ)‖H0 .

Knowing that (a+ b)2 6 2(a2 + b2), that is, (a+ b+ c)2 6 4(a2 + b2) + 2c2, we have

(
sup
‖ψ‖V0

61

|(wt(1 + θ), ψ)H0|
)2

6 4M2
0

√
n(p+ − 1)

(
1

r−
+

1

s−

)
ξ|∇u(1+θ)|+|∇v(1+θ)|I1(∇u(1+θ),∇v(1+θ))

+ 4(p+ − 1)

(
1

r−
+

1

s−

)
ξ|u(1+θ)|+|v(1+θ)|I(u(1+θ),v(1+θ))

+ 2(M0ηα1 + LBα
2α1)2‖∇w(1 + θ)‖2

H0
.

Therefore,

‖(L(1)χ1−L(1)χ2)t‖2
L2(0,1;V

′
0 )

=

∫ 1

0

‖wt(1 + θ)‖2
V
′
0
dθ

=

∫ 1

0

(
sup
‖ψ‖V0

61

|(wt(1 + θ), ψ)H0|

)2

dθ

6 4M2
0

√
n(p+ − 1)

(
1

r−
+

1

s−

)∫ 1

0

ξ|∇u(1+θ)|+|∇v(1+θ)|I1(∇u(1+θ),∇v(1+θ)) dθ

+ 4(p+ − 1)

(
1

r−
+

1

s−

)∫ 1

0

ξ|u(1+θ)|+|v(1+θ)|I(u(1+θ),v(1+θ)) dθ

+ 2(M0ηα1 + LBα
2α1)2

∫ 1

0

‖∇w(1 + θ)‖2
H0

dθ.(4.32)
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In turn, it follows from the demonstration of Lemma 3.1, considering t0 = 1
2

and k = 1
2
, the

existence of r2 > 0 such that ‖u(t)‖V0 6 r2, for all t > t1 = t0 + k = 1, then

‖ |∇u(1 + θ)|+ |∇v(1 + θ)| ‖p(x) 6 sup
θ∈[0,1]

(‖∇u(1 + θ)‖p(x) + ‖∇v(1 + θ)‖p(x))

6 sup
t∈[1,2]

(‖u(t)‖V0 + ‖v(t)‖V0)

62r2, ∀θ ∈ [0, 1].

So,

ξ|∇u(1+θ)|+|∇v(1+θ)| 6 max{(2r2)
p−

s− , (2r2)
p+

s− , (2r2)
p−

s+ , (2r2)
p+

s+ } := κ1.

Likewise, we can conclude that ξ|u(1+θ)|+|v(1+θ)| 6 κ1. Hence, in (4.32), we have

‖(L(1)χ1 − L(1)χ2)t‖2
L2(0,1;V

′
0 )

6 γ

(∫ 1

0

I1(∇u(1+θ),∇v(1+θ)) dθ +

∫ 1

0

I(u(1+θ),v(1+θ)) dθ +

∫ 1

0

‖∇w(1 + θ)‖2
H0

dθ

)
,(4.33)

where γ=max
{

4M2
0

√
n(p+ − 1)

(
1
r−

+ 1
s−

)
κ1, 4(p+ − 1)

(
1
r−

+ 1
s−

)
κ1, 2(M0ηα1 + LBα

2α1)2
}

.
Our next goal is to show the existence of a constant, β1 > 0, such that

(4.34)
∫ 1

0

I1(∇u(1+θ),∇v(1+θ)) dθ 6 β1

∫ 1

0

‖w(θ)‖2
H0

dθ.

Making the product (·, w)H0 in equation (4.19) we have

(wt, w)H0 + (AH0
0 u− AH0

0 v, w)H0 = (Bu−Bv,w)H0 ,

where

(AH0
0 u−AH0

0 v, w)H0 = 〈A0u− A0v, w〉V ′0 ,V0

=

∫
Ω1

d0(x)
(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

)
∇w dx+

∫
Ω1

d0(x)η(∇u−∇v)∇w dx

+

∫
Ω

(|u|p(x)−2u− |v|p(x)−2v)w dx

>m0I1(∇u,∇v) +m0η

∫
Ω1

|∇w|2 dx+ I(u,v).
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It follows from Lemma 2.1 in [27], with δ = 0, that
1

2

d

dt
‖w‖2

H0
+m0

∫
Ω1

1

2p(x)−1
|∇w|2(|∇u|+ |∇v|)p(x)−2 dx+m0η

∫
Ω1

|∇w|2 dx

+

∫
Ω

1

2p(x)−1
|w|2(|u|+ |v|)p(x)−2 dx

6
1

2

d

dt
‖w‖2

H0
+m0I1(∇u,∇v) +m0η

∫
Ω1

|∇w|2 dx+ I(u,v)

6 (wt, w)H0 + (AH0
0 u− AH0

0 v, w)H0

= (Bu−Bv,w)H0

6 ‖Bu−Bv‖H0‖w‖H0

6 LB‖w‖2
H0
.(4.35)

Since p(x) 6 p+ we can write

(4.36)
1

2

d

dt
‖w‖2

H0
+m0

1

2p+−1

∫
Ω1

|∇w|2(|∇u|+ |∇v|)p(x)−2 dx 6 LB‖w‖2
H0
,

(4.37)
1

2

d

dt
‖w‖2

H0
+m0η

∫
Ω1

|∇w|2 dx 6 LB‖w‖2
H0

and

(4.38)
1

2

d

dt
‖w‖2

H0
+

1

2p+−1

∫
Ω

|w|2(|u|+ |v|)p(x)−2 dx 6 LB‖w‖2
H0
.

Neglecting the second term of the sum in (4.36) and integrating to θ varying in interval [s, t],
where 0 6 s < t, it follows that

‖w(t)‖2
H0
6 ‖w(s)‖2

H0
+ 2LB

∫ t

s

‖w(θ)‖2
H0
dθ.

From the Grönwall Bellman Lemma, we have

(4.39) ‖w(t)‖2
H0
6 ‖w(s)‖2

H0
e2LB(t−s), for 0 6 s < t.

Returning to (4.36) and integrating in interval [τ, 2], with τ ∈ [0, 1], we obtain

1

2
‖w(2)‖2

H0
−1

2
‖w(τ)‖2

H0
+

m0

2p+−1

∫ 2

τ

∫
Ω1

|∇w|2(|∇u|+|∇v|)p(x)−2 dx dθ 6 LB

∫ 2

τ

‖w(θ)‖2
H0
dθ.

Then,

m0

2p+−2

∫ 2

τ

∫
Ω1

|∇w|2(|∇u|+ |∇v|)p(x)−2 dx dθ

6
m0

2p+−2

∫ 2

τ

∫
Ω1

|∇w|2(|∇u|+ |∇v|)p(x)−2 dx dθ + ‖w(2)‖2
H0

6 ‖w(τ)‖2
H0

+ 2LB

∫ 2

τ

‖w(θ)‖2
H0
dθ.(4.40)
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We will now estimate the left side of inequality (4.40). Since 0 6 τ 6 θ 6 2 then for (4.39),
with s = τ and t = θ, we have

‖w(θ)‖2
H0
6 ‖w(τ)‖2

H0
e2LB(θ−τ).

Integrating this last inequality to θ varying in [τ, 2], we obtain

(4.41) 2LB

∫ 2

τ

‖w(θ)‖2
H0
dθ 6 ‖w(τ)‖2

H0
e2LB(2−τ) − ‖w(τ)‖2

H0
.

Substituting in (4.40) we conclude that

m0

2p+−2

∫ 2

τ

∫
Ω1

|∇w|2(|∇u|+ |∇v|)p(x)−2 dx dθ 6 ‖w(τ)‖2
H0
e4LB , ∀τ ∈ [0, 1].(4.42)

So, from (4.42) and from Lemma 2.1 in [27], we have∫ 1

0

I1(∇u(1+θ),∇v(1+θ))dθ =

∫ 2

1

∫
Ω1

||∇u(t)|p(x)−2∇u(t)− |∇v(t)|p(x)−2∇v(t)||∇w(t)| dxdt

6
∫ 2

τ

∫
Ω1

||∇u(t)|p(x)−2∇u(t)− |∇v(t)|p(x)−2∇v(t)||∇w(t)| dxdt

6
√
n(p+ − 1)

∫ 2

τ

∫
Ω1

|∇w|2(|∇u|+ |∇v|)p(x)−2 dxdt

6
√
n(p+ − 1)

(
2p

+−2

m0

‖w(τ)‖2
H0
e4LB

)
, ∀τ ∈ [0, 1].

Integrating this last inequality for τ varying in [0, 1] we have∫ 1

0

I1(∇u(1+θ),∇v(1+θ)) dθ 6
2p

+−2

m0

√
n(p+ − 1)e4LB

∫ 1

0

‖w(τ)‖2
H0
dτ.

Therefore (4.34) occurs for β1 = 2p
+−2m−1

0

√
n(p+ − 1)e4LB .

Proceeding analogously, we conclude the existence of β2 > 0, such that

(4.43)
∫ 1

0

I(u(1+θ),v(1+θ)) dθ 6 β2

∫ 1

0

‖w(θ)‖2
H0
dθ.

In fact, using the same argumentation made in (4.36), for (4.38), it follows from (4.41) that

1

2p+−2

∫ 2

τ

∫
Ω

|w|2(|u|+ |v|)p(x)−2 dx dθ 6
1

2p+−2

∫ 2

τ

∫
Ω

|w|2(|u|+ |v|)p(x)−2 dx dθ + ‖w(2)‖2
H0

6‖w(τ)‖2
H0

+ 2LB

∫ 2

τ

‖w(θ)‖2
H0
dθ

6‖w(τ)‖2
H0
e4LB , ∀τ ∈ [0, 1].(4.44)
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Then, from Lemma 2.1 in [27], with δ = 0, and (4.44), we conclude that∫ 1

0

I(u(1+θ),v(1+θ)) dθ =

∫ 2

1

∫
Ω

||u(t)|p(x)−2u(t)− |v(t)|p(x)−2v(t)||w(t)| dxdt

6
∫ 2

τ

∫
Ω

||u(t)|p(x)−2u(t)− |v(t)|p(x)−2v(t)||w(t)| dxdt

6(p+ − 1)

∫ 2

τ

∫
Ω

|w|2(|u|+ |v|)p(x)−2 dxdt

6(p+ − 1)
(

2p
+−2‖w(τ)‖2

H0
e4LB

)
, ∀τ ∈ [0, 1].

Integrating this last inequality for τ varying in [0, 1] we have

∫ 1

0

I(u(1+θ),v(1+θ)) dθ 6 2p
+−2(p+ − 1)e4LB

∫ 1

0

‖w(τ)‖2
H0
dτ,

obtaining (4.43), with β2 = 2p
+−2(p+ − 1)e4LB .

Besides, we have the existence of β3 > 0 such that

(4.45) ‖∇w(1 + ·)‖2
L2(0,1;H0) 6 β3

∫ 1

0

‖w(θ)‖2
H0

dθ.

In fact, integrating both sides of (4.37) under the interval [τ, 2], for τ ∈ [0, 1], it follows from
(4.41), that

2m0η

∫ 2

τ

∫
Ω1

|∇w(θ, x)|2 dx dθ 62m0η

∫ 2

τ

∫
Ω1

|∇w(θ, x)|2 dx dθ + ‖w(2)‖2
H0

6‖w(τ)‖2
H0

+ 2LB

∫ 2

τ

‖w(θ)‖2
H0
dθ

6‖w(τ)‖2
H0
e4LB , ∀τ ∈ [0, 1].

Consequently, ∫ 1

0

∫
Ω

|∇w(1 + θ, x)|2 dx dθ 6
∫ 2

τ

∫
Ω1

|∇w(t, x)|2 dx dt

6
e4LB

2m0η
‖w(τ)‖2

H0
, ∀τ ∈ [0, 1].

Integrating this last inequality for τ varying in [0, 1], we obtain (4.45) with
β3 = e4LB(2m0η)−1.
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Finally, it follows from (4.33), (4.34), (4.43) and (4.45) that

‖L(1)χ1 − L(1)χ2‖Y0 = ‖∇w(1 + ·)‖L2(0,1;H0) + ‖(L(1)χ1 − L(1)χ2)t‖L2(0,1;V
′
0 )

6‖∇w(1 + ·)‖L2(0,1;H0)

+ γ
1
2

(∫ 1

0

I1(∇u(1+θ),∇v(1+θ)) dθ + ‖∇w(1 + ·)‖2
L2(0,1;H0) +

∫ 1

0

I(u(1+θ),v(1+θ)) dθ

) 1
2

6‖∇w(1 + ·)‖L2(0,1;H0) + γ
1
2

(∫ 1

0

I1(∇u(1+θ),∇v(1+θ)) dθ

) 1
2

+ γ
1
2‖∇w(1 + ·)‖L2(0,1;H0)

+ γ
1
2

(∫ 1

0

I(u(1+θ),v(1+θ)) dθ

) 1
2

6(1 + γ
1
2 )

(
β3

∫ 1

0

‖w(θ)‖2
H0
dθ

) 1
2

+ γ
1
2

(
β1

∫ 1

0

‖w(θ)‖2
H0
dθ

) 1
2

+ γ
1
2

(
β2

∫ 1

0

‖w(θ)‖2
H0
dθ

) 1
2

=ω1‖χ1 − χ2‖L2(0,1;H0),

where ω1 = [(1 + γ
1
2 )β

1
2
3 + γ

1
2β

1
2
1 + γ

1
2β

1
2
2 ]. Thus, concluding the demonstration. �

We emphasize that in this last Lemma the constant ωλ1 > 0 cannot be taken uniformly with
respect to the parameter λ ∈ (0, 1], given that the constant Mλ > 0 determined by the limitation of
diffusion dλ, composes the constant ωλ1 .

Consider the applications

e :X→ H0

χ 7→ χ(1)(4.46)

and

eλ :Xλ → H

χ 7→ χ(1),(4.47)

for all λ ∈ (0, 1].

Lemma 4.4. Applications e and eλ defined, respectively, in (4.46) and (4.47), are Lipschitz con-
tinuous in B0 and Bλ0 respectively.

Proof. We will demonstrate that e is Lipschitz continuous. The demonstration for eλ is made the
same way.

Let χ1, χ2 ∈ B0, then there exits only u and v solutions of (2.9) with u(0), v(0) ∈ B0 such
that u|[0,1] = χ1 and v|[0,1] = χ2, we denote by w the difference u − v. Proceeding as in the
demonstration of Lemma 4.3, we can conclude (4.39). In particular,

‖w(1)‖2
H0
6 ‖w(θ)‖2

H0
e2LB(1−θ) 6 ‖w(θ)‖2

H0
e2LB , ∀θ ∈ [0, 1].
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Integrating this last inequality, for θ varying in [0, 1], we have

‖w(1)‖H0 6 eLB
(∫ 1

0

‖w(θ)‖2
H0
dθ

) 1
2

.

Then,

‖e(χ1)− e(χ2)‖H0 = ‖w(1)‖H0 6 eLB‖w‖L2(0,1;H0) = eLB‖χ1 − χ2‖L2(0,1;H0).

�

Proposition 4.1. There exists constant c3 = c3(u0) > 0 such that

‖L(s)χ1 − L(t)χ2‖L2(0,1;H0) 6 c3(|s− t|
1
2 + ‖χ1 − χ2‖L2(0,1;H0)),

for all t, s ∈ [0, 1] and for all χ1, χ2 ∈ B0. For each λ ∈ (0, 1], there exists c̃3 = c̃3(uλ0) > 0 such
that

‖Lλ(s)χ1 − Lλ(t)χ2‖L2(0,1;H) 6 c̃3(|s− t|
1
2 + ‖χ1 − χ2‖L2(0,1;H)),

for all t, s ∈ [0, 1] and for all χ1, χ2 ∈ Bλ0 .

Proof. First of all, we will demonstrate that there exists c > 0 so that

‖T0(s)u0 − T0(t)v0‖H0 6 c(|s− t|
1
2 + ‖u0 − v0‖H0),

for all s, t ∈ [0, 1] and u0, v0 ∈ B0. Indeed, for all s, t ∈ [0, 1] and u0, v0 ∈ B0

(4.48) ‖T0(s)u0 − T0(t)v0‖H0 6 ‖T0(s)u0 − T0(t)u0‖H0 + ‖T0(t)u0 − T0(t)v0‖H0 .

By the Fundamental Theorem of Calculus, Hölder inequality, Fubini Theorem and Theorem 3.6
from [8], once u0 ∈ B0 ⊂ V0 = D(ϕ) , we have

‖T0(s)u0 − T0(t)u0‖2
H0

=

∫
Ω

|T0(s)u0(x)− T0(t)u0(x)|2 dx

=

∫
Ω

∣∣∣∣∫ s

t

(T0(θ)u0(x))θ dθ

∣∣∣∣2 dx
6 |s− t|

∫
Ω

∫ s

t

|(T0(θ)u0(x))θ|2 dθ dx

= |s− t|
∫ s

t

‖(T0(θ)u0)θ‖2
H0
dθ

6 |s− t|‖(T0(·)u0)t‖2
L2(0,1;H0)

6 |s− t|c2
1,

where c1 = c1(u0). Besides, it follows from (4.39) that,

‖T0(t)u0 − T0(t)v0‖H0 6 c2‖u0 − v0‖H0 .

So, returning to (4.48), we have that

(4.49) ‖T0(s)u0 − T0(t)v0‖H0 6 c1|s− t|
1
2 + c2‖u0 − v0‖H0

for all t, s ∈ [0, 1] and u0, v0 ∈ B0.
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From Lemma 4.1, T0(θ)u0, T0(θ)v0 ∈ B0, for all θ ∈ [0, 1]. From (4.49), we have

‖L(s)χ1 − L(t)χ2‖2
L2(0,1;H0) =

∫ 1

0

‖T0(s)T0(θ)u0 − T0(t)T0(θ)v0‖2
H0
dθ

6
∫ 1

0

(c1 + c2)2(|s− t|
1
2 + ‖T0(θ)u0 − T0(θ)v0‖H0)2 dθ

6 4(c1 + c2)2(|s− t|+ ‖χ1 − χ2‖2
L2(0,1;H0)).

Therefore, for c3 = 2(c1 + c2), we conclude the result for {L(t)}t>0. The estimative for case
λ ∈ (0, 1], follows analogously. �

Now, we state the main result of the work.

Theorem 4.1. The dynamic system associated with (2.9), has a global attractorA0. Furthermore,
there exists a subset B of H0, positively invariant, with A0 ⊂ B so that the dynamic system
(T0(t), B) admits an exponential attractor E0.

For each λ ∈ (0, 1], the dynamic system associated with (2.8), has a global attractorAλ. More-
over, there exists a subset Bλ of H , positively invariant, with Aλ ⊂ Bλ so that the dynamic system
(Tλ(t), Bλ) admits an exponential attractor Eλ.

Proof. Let u0 ∈ H0 and T > 0, we have seen that (2.9) admits a unique u ∈ C([0, T ];H0) weak
solution in [0, T ]. Due to Lemma 3.4, we can apply Theorem 3.6 from [8], concluding, with this,
that u is the only strong solution of (2.9). From the demonstration of Lemma 3.1, fixing values of
t0 = k = 1, we have

‖u(t)‖V0 6 r, ∀t > 2.

That is, ‖u(t)‖p(x) 6 r and ‖∇u(t)‖p(x) 6 r, for all t > 2. Therefore,

u(t) ∈ B1 ⊂
⋃

s∈[0,2]

T0(s)B1 = B0, ∀t > 2.(4.50)

Lemma 4.1 and (4.50), guarantee Hypothesis (H2) of [1]. From Proposition 4.1, Hypothesis
(H4), (H9) and (H10), from [1], are satisfied. From Lemmas 4.3 and 4.4, we have, respectively,
that Hypothesis (H6) and (H8) from [1] are verified.

Moreover, from Hypothesis (H2) and (H4), it follows from Lemma 4.2, that B0
` satisfies the

hypothesis from Lemma 1.1 in [1]. Then, from the demonstration of Theorem 2.1, in [1], (L(t),X)
admits a global attractor A0.

It follows from Theorem 2.5, in [1], that the dynamic system (L(t),B0) admits an exponential
attractor. Finally, Theorem 2.6, in [1], guarantee that (T0(t), e(B0)) has an exponential attractor in
E0.

Proceeding in an analogous way, we conclude the existence of an exponential attractor for the
dynamic system (Tλ(t), eλ(Bλ0 )), where λ ∈ (0, 1]. �

Remark 4.1. In the method of the `−trajectories, in [1], we can consider the following alternative
hypothesis for (H1) and (H5), respectively,
(H1)′ For all u0 ∈ X and any T > 0, exists, not necessarily a unique solution u for (1.6) in

[0, T ], with u(0) = u0 and u : [0, T ]→ (X, σ(X,X
′
)) continuous.

(H5)′ B`0 is compact in X` = L2(0, `;X).
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[8] H. Brézis, Operateurs Maximaux Monotones et semi-groupes de contractions dans les espaces de Hilbert, North-
Holland Publishing Company, Amsterdam, 1973.

[9] I. Peral, Multiplicity of solutions for the p-Laplacian, Second School for Quasilinear Functional Analysis and
Applications to Differential Equations, Miramere-Trieste, 1997.

[10] X. L. Fan & Q. H. Zhang, On the SpacesLp(x) andWm,p(x), Journal of Mathematical Analysis and Applications,
263, 424-446, 2001.
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[17] M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol.

1748, Springer-Verlag, Berlin, 2000.
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