[1]     M. Thai, P. Phan, T. Hoang, S. Wong, N. Lovell, T. Do, Advanced intelligent systems for surgical robotics. Adv. Intell. Syst. 2020, 2, 1900138.
[2]     C. Gao, H. Phalen, S. Sefati, J. Ma, R. Taylor, M. Unberath, M. Armand, Fluoroscopic navigation for a surgical robotic system including a continuum manipulator. IEEE Trans. Biomed. Eng. 2022, 69, 453.
[3]     Y. Huang, J. Li, X. Zhang, K. Xie, J. Li, Y. Liu, C. Ng, P. Chiu, Z. Li, A surgeon preference-guided autonomous instrument tracking method with a robotic flexible endoscope based on dVRK platform. IEEE Robot. Autom. Lett. 2022, 7, 2250.
[4]     X. Kong, Y. Jin, D. Qi, Z. Wang, Z. Rui. B. Lu, E. Dong, Y. Liu, D. Sun, Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1607.
[5]     P. Dupont, B. Nelson, M. Goldfarb, B. Hannaford, A. Menciassi, M. O’Malley, N. Simaan, P. Valdastri, G. Yang, A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 2021, 6, eabi8017.
[6]     B. Yang, W. Chen, Z. Wang, Y. Lu, J. Mao, H. Wang, Y. Liu, Adaptive FOV control of laparoscopes with programmable composed constraints. IEEE Trans. Med. Robot. Bionics 2019, 1, 206.
[7]     L. Li, X. Li, B. Ouyang, S. Ding, S. Yang, Y. Qu, Autonomous multiple instruments tracking for robot-assisted laparoscopic surgery with visual tracking space vector method. IEEE/ASME Trans. Mech. 2022, 27, 733.
[8]     W. Zeng, J. Yan, K. Yan, X. Huang, X. Wang, S. Cheng, Modeling a symmetrically-notched continuum neurosurgical robot with non-constant curvature and superelastic property. IEEE Robot. Autom. Lett. 2021, 6, 6489.
[9]     H. Mo, R. Wei, B. Ouyang, L. Xing, Y. Shan, Y. Liu, D. Sun, Control of a flexible continuum manipulator for laser beam steering. IEEE Robot. Autom. Lett. 2021, 6, 1074.
[10]   J. Wang, A. Chortos, Control Strategies for Soft Robot Systems. Adv. Intell. Syst. 2022, 4, 2100165.
[11]   F. Anooshahpour, P. Yadmellat, I. Polushin, R. Patel, A motion transmission model for a class of tendon-based mechanisms with application to position tracking of the da Vinci instrument. IEEE/ASME Trans. Mech. 2019, 24, 538.
[12]   X. Huang, J. Zou, G. Gu, Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Trans. Mech. 2021, 26, 3175.
[13]   D. Bruder, X. Fu, R. Gillespie, C. Remy and R. Vasudevan, Data-driven control of soft robots using Koopman operator theory, IEEE Trans. Robot. 2021, 37, 948.
[14]   R. Webster, B. Jones, Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 2010, 29, 1661.
[15]   K. Nuelle, T. Sterneck, S. Lilge, D. Xiong, J. Burgner-Kahrs, T. Ortmaier, Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot. IEEE Robot. Autom. Lett. 2020, 5, 5811.
[16]   S. Huang, D. Meng, X. Wang, B. Liang, W. Lu, A 3D static modeling method and experimental verification of continuum robots based on pseudo-rigid body theory. Proc. IEEE/RSJ Int. Conf. Rob. Syst. (IROS) 2019, 4672
[17]   D. Bruder, A. Sedal, R. Vasudevan, C. Remy, Force generation by parallel combinations of fiber-reinforced fluid-driven actuators. IEEE Robot. Autom. Lett. 2018, 3, 3999.
[18]   T. Thuruthel, E. Falotico, F. Renda, C. Laschi, Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Robot. 2019, 35, 124.
[19]   A. Sedal, A. Wineman, R. Gillespie and C. Remy, Comparison and experimental validation of predictive models for soft, fiber-reinforced actuators. Int. J. Robot. Res. 2021, 40, 119.
[20]   D. Bruder, A. Sedal, J. Bishop-Moser, S. Kota, R. Vasudevan, Model based control of fiber reinforced elastofluidic enclosures. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 2017, 5539.
[21]   K. Chin, T. Hellebrekers, C. Majidi, Machine Learning for Soft Robotic Sensing and Control. Adv. Intell. Syst. 2020, 2, 1900171.
[22]   G. Mamakoukas, M. Castaño, X. Tan, T. D. Murphey, Derivative-based koopman operators for real-time control of robotic systems. IEEE Trans. Robot. 2021, 37, 2173.
[23]   I. Abraham, T. D. Murphey, Active learning of dynamics for data-driven control using Koopman operators. IEEE Trans. Robot. 2019, 351071-1083.
[24]   D. Bruder, C. Remy, R. Vasudevan, Nonlinear system identification of soft robot dynamics using Koopman operator theory. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 2019, 6244.
[25]   M. Korda, I. Mezić, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 2018, 93, 149.
[26]   B. Li, B. Lu, Y. Lu, Q. Dou, Y. Liu, Data-driven holistic framework for automated laparoscope optimal view control with learning-based depth perception. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 2021, 12366.
[27]   D. Shuman, P. Vandergheynst, D. Kressner, P. Frossard, Distributed signal processing via chebyshev polynomial approximation. IEEE. Trans. Signal Inf. Process Netw. 2018, 4, 736.
[28]   L. Wang, Y. Chen, D. Liu, D. Boutat, Numerical algorithm to solve generalized fractional pantograph equations with variable coefficients based on shifted Chebyshev polynomials. Int. J. Comput. Math. 2019, 96, 2487.
[29]   M. Williams, I. Kevrekidis, C. Rowley, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 2015, 25, 1307.
[30]   T. Çimen, State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 2008, 41, 3761.
[31]   A. Ahmadian, S. Salahshour, C. Chan, Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev Polynomials and its applications. IEEE Trans Fuzzy Syst. 2017, 25, 218.
[32]   X. Du, T. Kurmann, P. Chang, M. Allan, S. Ourselin, R. Sznitman, J. Kelly, D. Stoyanov, Articulated multi-instrument 2-D pose estimation using fully convolutional networks. IEEE Trans. Med. Imaging. 2018, 37, 1276.
[33]   Z. Luo, Z. Wang, Y. Huang, L. Wang, T. Tan, E. Zhou, Rethinking the heatmap regression for bottom-up human pose estimation. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR) 2021, 13264.
[34]   L. Sharan, G. Romano, J. Brand, H. Kelm, M. Karck, R, Simone, S. Engelhardt, Point detection through multi-instance deep heatmap regression for sutures in endoscopy. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 2107.
[35]   B. Cheng, B. Xiao, J. Wang, H. Shi, T. Huang, L. Zhang, Higherhrnet: scale-aware representation learning for bottom-up human pose estimation. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR) 2020, 5386.
[36]   C. Payer, D. Štern, H. Bischof, M. Urschler, Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 2019, 54, 207.
[37]   K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C, Xu, Ghostnet: more features from cheap operations. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR) 2020, 1580.
[38]   S. Woo, J. Park, J. Lee, I. Kweon, Cbam: convolutional block attention module. Proc. Europ. Conf. on Comput. Vis. (ECCV) 2018, 3.
[39]   S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR) 2018, 8759.
[40]   N. Ma, X. Zhang, M. Liu, J. Sun, Activate or not: Learning customized activation. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR) 2021, 8032.
[41]   E. Todorov, T. Erez, Y. Tassa, MuJoCo: A physics engine for model-based control. Proc. IEEE/RSJ Int. Conf. Rob. Syst. (IROS) 2012, 5026.