References
Buchholz, P. C. F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover, L. L., Chow, J., Streit, W. R., & Pleiss, J. (2022). Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function and Bioinformatics , 1443–1456.
Dong, Q., Yuan, S., Wu, L., Su, L., Zhao, Q., Wu, J., Huang, W., & Zhou, J. (2020) Structure-guided engineering of a Thermobifida fusca cutinase for enhanced hydrolysis on natural polyester substrate.Bioresources and Bioprocessing . 7 (1), 37.
Ellis, L.D., Rorrer, N.A., Sullivan, K.P., Otto, M., McGeehan, J.E., Román-Leshkov, Y., Wierckx, N., & Beckham, G.T. (2021) Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis , 4 (7), 539–556.
Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L.P., & Ramírez-Sarmiento, C.A. (2018) Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophysical Journal , 114 (6) 1302–1312.
Furukawa, M., Kawakami, N., Tomizawa, A. & Miyamoto, K. (2019) Efficient Degradation of Poly(ethylene terephthalate) withThermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches.Scientific Reports , 9 (1) 1–9.
Geyer, R., Jambeck, J.R., & Law, K.L. (2017) Production, use, and fate of all plastics ever made. Science Advances , 3 (7), 25–29.
Han, X., Liu, W., Huang, J.W., Ma, J., Zheng, Y., Ko, T.P., Xu, L., Cheng, Y.S., Chen, C.C., & Guo, R.T. (2017) Structural insight into catalytic mechanism of PET hydrolase. Nature Communications ,8 (1), 2106.
Jensen, K., Borch, K., Westh P., & Kari, J. (2022) Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester ̵̊.JACS Au , 2 (5), 1223–1231.
Kawai, F., Kawabata T., & Oda, M. (2019) Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology ,103 , 4253-4268.
Kawai, F., Kawabata, T., & Oda, M. (2020) Current State and Perspectives Related to the Polyethylene Terephthalate Hydrolases Available for Biorecycling. ACS Sustainable Chemistry & Engineering , 8 (24), 8894–8908.
Maurya, A., Bhattacharya, A., & Khare, S.K. (2020) Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Frontiers in Bioengineering and Biotechnology , 8 , 1–13.
Mrigwani, A., Thakur B. and Guptasarma, P. (2022) Enhancing high-temperature degradation of polyethylene terephthalate through a synergistic division of enzyme labour between a solid-degrading thermostable cutinase and a reaction intermediate-degrading thermostable carboxylesterase, BioRxivhttps://doi.org/10.1101/2022.02.02.478778
Roth, C., Wei, R., Oeser, T., Then, J., Föllner, C., Zimmermann, W., Sträter, N. (2014) Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca . Applied Microbiology and Biotechnology . 98 (18) 7815-23.
Ru, J., Huo, Y., & Yang, Y. (2020) Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology ,11 , 442.
Sarah, K., & Gloria, R. (2021) Achieving a circular bioeconomy for plastics. Science, 37, 49-50.
Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.-J, Koga, Y., Takano, K., Kanaya, S. (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch com- post by using a metagenomic approach. Applied and Environmental Microbiology , 78 , 1556−1562.
Sulaiman, S., You, D.J., Eiko, K., Koga, Y., Kanaya, S. (2012) Crystal structure of Leaf-branch compost bacterial cutinase homolog. PDB DOI: 10.2210/pdb4EB0/pdb
Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Kamionka, E., Desrousseaux, M., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A. (2020) An engineered PET depolymerase to break down and recycle plastic bottles. Nature ,580 , 216–219.
Wei, R., Oeser, T., Schmidt, J., Meier, R., Barth, M., Then J., & Zimmermann, W. (2016) Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering , 113 (8), 1658–1665.
Wei, R., von Haugwitz, G., Pfaff, L., Mican, J., Badenhorst, C.P.S., Liu, W., Weber, G., Austin, H.P., Bednar, D., Damborsky, J., & Bornscheuer, U.T. (2022) Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis , 12 (6), 3382–3396.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., Oda, K. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate).Science , 351 , 1196−1199.
Zhang, Y. & Skolnick, J. (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research ,33 , 2302e2309.