References
Buchholz, P. C. F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover,
L. L., Chow, J., Streit, W. R., & Pleiss, J. (2022). Plastics
degradation by hydrolytic enzymes: The plastics-active enzymes
database—PAZy. Proteins: Structure, Function and
Bioinformatics , 1443–1456.
Dong, Q., Yuan, S., Wu, L., Su, L., Zhao, Q., Wu, J., Huang, W., &
Zhou, J. (2020) Structure-guided engineering of a Thermobifida
fusca cutinase for enhanced hydrolysis on natural polyester substrate.Bioresources and Bioprocessing . 7 (1), 37.
Ellis, L.D., Rorrer, N.A., Sullivan, K.P., Otto, M., McGeehan, J.E.,
Román-Leshkov, Y., Wierckx, N., & Beckham, G.T. (2021) Chemical and
biological catalysis for plastics recycling and upcycling. Nature
Catalysis , 4 (7), 539–556.
Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor,
M., Parra, L.P., & Ramírez-Sarmiento, C.A. (2018) Active Site
Flexibility as a Hallmark for Efficient PET Degradation by I.
sakaiensis PETase. Biophysical Journal , 114 (6)
1302–1312.
Furukawa, M., Kawakami, N., Tomizawa, A. & Miyamoto, K. (2019)
Efficient Degradation of Poly(ethylene terephthalate) withThermobifida fusca Cutinase Exhibiting Improved Catalytic
Activity Generated using Mutagenesis and Additive-based Approaches.Scientific Reports , 9 (1) 1–9.
Geyer, R., Jambeck, J.R., & Law, K.L. (2017) Production, use, and fate
of all plastics ever made. Science Advances , 3 (7), 25–29.
Han, X., Liu, W., Huang, J.W., Ma, J., Zheng, Y., Ko, T.P., Xu, L.,
Cheng, Y.S., Chen, C.C., & Guo, R.T. (2017) Structural insight into
catalytic mechanism of PET hydrolase. Nature Communications ,8 (1), 2106.
Jensen, K., Borch, K., Westh P., & Kari, J. (2022) Sabatier Principle
for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester ̵̊.JACS Au , 2 (5), 1223–1231.
Kawai, F., Kawabata T., & Oda, M. (2019) Current knowledge on enzymatic
PET degradation and its possible application to waste stream management
and other fields. Applied Microbiology and Biotechnology ,103 , 4253-4268.
Kawai, F., Kawabata, T., & Oda, M. (2020) Current State and
Perspectives Related to the Polyethylene Terephthalate Hydrolases
Available for Biorecycling. ACS Sustainable Chemistry &
Engineering , 8 (24), 8894–8908.
Maurya, A., Bhattacharya, A., & Khare, S.K. (2020) Enzymatic
Remediation of Polyethylene Terephthalate (PET)–Based Polymers for
Effective Management of Plastic Wastes: An Overview. Frontiers in
Bioengineering and Biotechnology , 8 , 1–13.
Mrigwani, A., Thakur B. and Guptasarma, P. (2022) Enhancing
high-temperature degradation of polyethylene terephthalate through a
synergistic division of enzyme labour between a solid-degrading
thermostable cutinase and a reaction intermediate-degrading thermostable
carboxylesterase, BioRxivhttps://doi.org/10.1101/2022.02.02.478778
Roth, C., Wei, R., Oeser, T., Then, J., Föllner, C., Zimmermann, W.,
Sträter, N. (2014) Structural and functional studies on a thermostable
polyethylene terephthalate degrading hydrolase from Thermobifida
fusca . Applied Microbiology and Biotechnology . 98 (18)
7815-23.
Ru, J., Huo, Y., & Yang, Y. (2020) Microbial degradation and
valorization of plastic wastes. Frontiers in Microbiology ,11 , 442.
Sarah, K., & Gloria, R. (2021) Achieving a circular bioeconomy for
plastics. Science, 37, 49-50.
Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.-J, Koga, Y., Takano, K.,
Kanaya, S. (2012) Isolation of a novel cutinase homolog with
polyethylene terephthalate-degrading activity from leaf-branch com- post
by using a metagenomic approach. Applied and Environmental
Microbiology , 78 , 1556−1562.
Sulaiman, S., You, D.J., Eiko, K., Koga, Y., Kanaya, S. (2012) Crystal
structure of Leaf-branch compost bacterial cutinase homolog. PDB DOI:
10.2210/pdb4EB0/pdb
Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C.,
Kamionka, E., Desrousseaux, M., Texier, H., Gavalda, S., Cot, M.,
Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M.,
André, I., Duquesne, S., & Marty, A. (2020) An engineered PET
depolymerase to break down and recycle plastic bottles. Nature ,580 , 216–219.
Wei, R., Oeser, T., Schmidt, J., Meier, R., Barth, M., Then J., &
Zimmermann, W. (2016) Engineered bacterial polyester hydrolases
efficiently degrade polyethylene terephthalate due to relieved product
inhibition. Biotechnology and Bioengineering , 113 (8),
1658–1665.
Wei, R., von Haugwitz, G., Pfaff, L., Mican, J., Badenhorst, C.P.S.,
Liu, W., Weber, G., Austin, H.P., Bednar, D., Damborsky, J., &
Bornscheuer, U.T. (2022) Mechanism-Based Design of Efficient PET
Hydrolases. ACS Catalysis , 12 (6), 3382–3396.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda,
Y., Toyohara, K., Miyamoto, K., Kimura, Y., Oda, K. (2016) A bacterium
that degrades and assimilates poly(ethylene terephthalate).Science , 351 , 1196−1199.
Zhang, Y. & Skolnick, J. (2005) TM-align: a protein structure alignment
algorithm based on the TM-score. Nucleic Acids Research ,33 , 2302e2309.