References
Avila, F.W., Ravi Ram, K., Bloch Qazi, M.C., Wolfner, M.F., 2010. Sex
Peptide Is Required for the Efficient Release of Stored Sperm in Mated
Drosophila Females. Genetics 186, 595–600.
https://doi.org/10.1534/genetics.110.119735
Avila, F.W., Sirot, L.K., LaFlamme, B.A., Rubinstein, C.D., Wolfner,
M.F., 2011. Insect Seminal Fluid Proteins: Identification and Function.
Annu. Rev. Entomol. 56, 21–40.
https://doi.org/10.1146/annurev-ento-120709-144823
Bass, T.M., Grandison, R.C., Wong, R., Martinez, P., Partridge, L.,
Piper, M.D.W., 2007. Optimization of Dietary Restriction Protocols in
Drosophila. J. Gerontol. Ser. A 62, 1071–1081.
https://doi.org/10.1093/gerona/62.10.1071
Ben-David, G., Miller, E., Steinhauer, J., 2015. Drosophila spermatid
individualization is sensitive to temperature and fatty acid metabolism.
Spermatogenesis 5. https://doi.org/10.1080/21565562.2015.1006089
Bodenstein, D., 1950. The postembryonic development of Drosophila, in:
Biology of Drosophila. Demerec, M., New York, pp. 275–367.
Box, A.M., Church, S.J., Hayes, D., Nandakumar, S., Taichman, R.S.,
Buttitta, L., 2019. Endocycling in the adult Drosophila accessory gland.
bioRxiv 719013. https://doi.org/10.1101/719013
Brooks, M., Kristensen, K., van Benthem, K., Magnusson, A., Berg, C.,
Nielsen, A., Skaug, H., Maechler, M., Bolker, B., 2017. glmmTMB Balances
Speed and Flexibility Among Packages for Zero-inflated Generalized
Linear Mixed Modeling. R J. 9, 378–400.
Byerly, M.T., Fat-Halla, S.I., Betsill, R.K., Patiño, R., 2005.
Evaluation of Short-Term Exposure to High Temperature as a Tool to
Suppress the Reproductive Development of Channel Catfish for
Aquaculture. North Am. J. Aquac. 67, 331–339.
https://doi.org/10.1577/A05-008.1
Chakir, M., Chafik, A., Moreteau, B., Gibert, P., David, J.R., 2002.
Male sterility thermal thresholds in Drosophila: D. simulans appears
more cold-adapted than its sibling D. melanogaster. Genetica 114,
195–205. https://doi.org/10.1023/a:1015154329762
Chapman, T., 2001. Seminal fluid-mediated fitness traits in Drosophila.
Heredity 87, 511–521. https://doi.org/10.1046/j.1365-2540.2001.00961.x
Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner,
M.F., Smith, H.K., Partridge, L., 2003. The sex peptide of Drosophila
melanogaster: female post-mating responses analyzed by using RNA
interference. Proc. Natl. Acad. Sci. U. S. A. 100, 9923–9928.
https://doi.org/10.1073/pnas.1631635100
Chen, P.S., 1984. The Functional Morphology and Biochemistry of Insect
Male Accessory Glands and their Secretions. Annu. Rev. Entomol. 29,
233–255. https://doi.org/10.1146/annurev.en.29.010184.001313
Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M.,
Böhlen, P., 1988. A male accessory gland peptide that regulates
reproductive behavior of female D. melanogaster. Cell 54, 291–298.
https://doi.org/10.1016/0092-8674(88)90192-4
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Gao, X., Jr, W.J.G., Johns, T., Krinner, G., Shongwe, M., Weaver, A.J.,
Wehner, M., 2013. Long-term Climate Change: Projections, Commitments and
Irreversibility. Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin,
G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,
V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA.
Conrad, T., Stöcker, C., Ayasse, M., 2017. The effect of temperature on
male mating signals and female choice in the red mason bee, Osmia
bicornis (L.). Ecol. Evol. 7, 8966–8975.
https://doi.org/10.1002/ece3.3331
Corrigan, L., Redhai, S., Leiblich, A., Fan, S.-J., Perera, S.M.W.,
Patel, R., Gandy, C., Wainwright, S.M., Morris, J.F., Hamdy, F.,
Goberdhan, D.C.I., Wilson, C., 2014. BMP-regulated exosomes fromDrosophila male reproductive glands reprogram female behavior. J.
Cell Biol. 206, 671–688.
Cowles, R.B., Burleson, G.L., 1945. The Sterilizing Effect of High
Temperature on the Male Germ-Plasm of the Yucca Night Lizard, Xantusia
vigilis. Am. Nat. 79, 417–435. https://doi.org/10.1086/281277
Crawley, M.J., 2007. The R Book. John Wiley & Sons.
https://doi.org/10.1002/9780470515075
David, J.R., Araripe, L.O., Chakir, M., Legout, H., Lemos, B., Pétavy,
G., Rohmer, C., Joly, D., Moreteau, B., 2005. Male sterility at extreme
temperatures: a significant but neglected phenomenon for understanding
Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846.
https://doi.org/10.1111/j.1420-9101.2005.00914.x
den Boer, S.P.A., Baer, B., Dreier, S., Aron, S., Nash, D.R., Boomsma,
J.J., 2007. Prudent sperm use by leaf-cutter ant queens. Proc. R. Soc. B
Biol. Sci. 276, 3945–3953. https://doi.org/10.1098/rspb.2009.1184
den Boer, S.P.A., Boomsma, J.J., Baer, B., 2009. Honey bee males and
queens use glandular secretions to enhance sperm viability before and
after storage. J. Insect Physiol. 55, 538–543.
https://doi.org/10.1016/j.jinsphys.2009.01.012
den Boer, S.P.A., Boomsma, J.J., Baer, B., 2008. Seminal fluid enhances
sperm viability in the leafcutter ant Atta colombica. Behav. Ecol.
Sociobiol. 62, 1843–1849. https://doi.org/10.1007/s00265-008-0613-5
Dytham, C., 2011. Choosing and Using Statistics: A Biologist’s Guide.
Wiley-Blackwell.
Eckel, B.A., Guo, R., Reinhardt, K., 2017. More Pitfalls with Sperm
Viability Staining and a Viability-Based Stress Test to Characterize
Sperm Quality. Front. Ecol. Evol. 5.
https://doi.org/10.3389/fevo.2017.00165
Fabian, L., Brill, J.A., 2012. Drosophila spermiogenesis.
Spermatogenesis 2, 197–212. https://doi.org/10.4161/spmg.21798
Fricke, C., Wigby, S., Hobbs, R., Chapman, T., 2009. The benefits of
male ejaculate sex peptide transfer in Drosophila melanogaster. J. Evol.
Biol. 22, 275–286. https://doi.org/10.1111/j.1420-9101.2008.01638.x
Gillott, C., 2003. Male accessory gland secretions: modulators of female
reproductive physiology and behavior. Annu. Rev. Entomol. 48, 163–184.
https://doi.org/10.1146/annurev.ento.48.091801.112657
Gligorov, D., Sitnik, J.L., Maeda, R.K., Wolfner, M.F., Karch, F., 2013.
A novel function for the Hox Gene Abd-B in the male accessory
gland regulates the long-term female post-mating response inDrosophila . PloS Genet. 9, e1003395.
Hafez, E.S.E., 1964. Effects of high temperature on reproduction. Int.
J. Biometeorol. 7, 223–230. https://doi.org/10.1007/BF02187454
Hoffmann, A.A., 2010. Physiological climatic limits in Drosophila:
patterns and implications. J. Exp. Biol. 213, 870–880.
https://doi.org/10.1242/jeb.037630
Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., 2003. Adaptation of
Drosophila to temperature extremes: bringing together quantitative and
molecular approaches. J. Therm. Biol. 28, 175–216.
https://doi.org/10.1016/S0306-4565(02)00057-8
Holman, L., 2009. Drosophila melanogaster seminal fluid can protect the
sperm of other males. Funct. Ecol. 23, 180–186.
https://doi.org/10.1111/j.1365-2435.2008.01509.x
Hopkins, B.R., Sepil, I., Bonham, S., Miller, T., Charles, P.D.,
Fischer, R., Kessler, B.M., Wilson, C., Wigby, S., 2019. BMP signaling
inhibition in Drosophila secondary cells remodels the seminal
proteome and self and rival ejaculate functions. Proc. Natl. Acad. Sci.
U. S. A. 116, 24719–24728.
Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous Inference in
General Parametric Models. Biom. J. 50, 346–363.
Huey, R.B., Kingsolver, J.G., 1993. Evolution of Resistance to High
Temperature in Ectotherms. Am. Nat. 142, S21–S46.
https://doi.org/10.1086/285521
Huey, R.B., Stevenson, R.D., 1979. Integrating Thermal Physiology and
Ecology of Ectotherms: A Discussion of Approaches. Integr. Comp. Biol.
19, 357–366. https://doi.org/10.1093/icb/19.1.357
Hurley, L.L., McDiarmid, C.S., Friesen, C.R., Griffith, S.C., Rowe, M.,
2018. Experimental heatwaves negatively impact sperm quality in the
zebra finch. Proc. R. Soc. B Biol. Sci. 285, 20172547.
https://doi.org/10.1098/rspb.2017.2547
Jackman, S., 2017. pscl: Classes and Methods for R Developed in the
Political Science Computational Laboratory. United States Studies
Centre, University of Sydney. Sydney, New South Wales, Australia.
Kellermann, V., Overgaard, J., Hoffmann, A.A., Fløjgaard, C., Svenning,
J.-C., Loeschcke, V., 2012. Upper thermal limits of Drosophila are
linked to species distributions and strongly constrained
phylogenetically. Proc. Natl. Acad. Sci. U. S. A. 109, 16228–16233.
https://doi.org/10.1073/pnas.1207553109
King, M., Eubel, H., Millar, A.H., Baer, B., 2011. Proteins within the
seminal fluid are crucial to keep sperm viable in the honeybee Apis
mellifera. J. Insect Physiol. 57, 409–414.
https://doi.org/10.1016/j.jinsphys.2010.12.011
Kirk Green, C., Moore, P.J., Sial, A.A., 2019. Impact of heat stress on
development and fertility of Drosophila suzukii Matsumura (Diptera:
Drosophilidae). J. Insect Physiol. 114, 45–52.
https://doi.org/10.1016/j.jinsphys.2019.02.008
Koppik, M., Specker, J.-H., Lindenbaum, I., Fricke, C., 2018.
Physiological Maturation Lags Behind Behavioral Maturation in Newly
Eclosed Drosophila melanogaster Males. Yale J. Biol. Med. 91, 399–408.
Kraaijeveld, K., Chapman, T., 2004. Effects of male sterility on female
remating in the mediterranean fruitfly, Ceratitis capitata. Proc. R.
Soc. B Biol. Sci. 271, S209–S211.
Le Bras, S., Van Doren, M., 2006. Development of the male germline stem
cell niche in Drosophila. Dev. Biol. 294, 92–103.
https://doi.org/10.1016/j.ydbio.2006.02.030
Lees, A.D., Picken, L.E.R., Gray, J., 1945. Shape in relation to fine
structure in the bristles of Drosophila melanogaster. Proc. R. Soc.
Lond. Ser. B - Biol. Sci. 132, 396–423.
https://doi.org/10.1098/rspb.1945.0004
Leiblich, A., Marsden, L., Gandy, C., Corrigan, L., Jenkins, R., Hamdy,
F., Wilson, C., 2012. Bone morphogenetic protein- and mating-dependent
secretory cell growth and migration in the Drosophila accessory gland.
Proc. Natl. Acad. Sci. 109, 19292–19297.
https://doi.org/10.1073/pnas.1214517109
Liu, H., Kubli, E., 2003. Sex-peptide is the molecular basis of the
sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A.
100, 9929–9933. https://doi.org/10.1073/pnas.1631700100
Lowe, W.H., Martin, T.E., Skelly, D.K., Woods, H.A., 2021. Metamorphosis
in an Era of Increasing Climate Variability. Trends Ecol. Evol. 36,
360–375. https://doi.org/10.1016/j.tree.2020.11.012
Lüpold, S., Pitnick, S., Berben, K.S., Blengini, C.S., Belote, J.M.,
Manier, M.K., 2013. Female mediation of competitive fertilization
success in Drosophila melanogaster. Proc. Natl. Acad. Sci. 110,
10693–10698. https://doi.org/10.1073/pnas.1300954110
Manier, M.K., Belote, J.M., Berben, K.S., Novikov, D., Stuart, W.T.,
Pitnick, S., 2010. Resolving mechanisms of competitive fertilization
success in Drosophila melanogaster. Science 328, 354–357.
https://doi.org/10.1126/science.1187096
Martins, N.E., Faria, V.G., Nolte, V., Schlötterer, C., Teixeira, L.,
Sucena, É., Magalhães, S., 2014. Host adaptation to viruses relies on
few genes with different cross-resistance properties. Proc. Natl. Acad.
Sci. 111, 5938–5943. https://doi.org/10.1073/pnas.1400378111
Mathur, V., Schmidt, P.S., 2017. Adaptive patterns of phenotypic
plasticity in laboratory and field environments in Drosophila
melanogaster. Evolution 71, 465–474. https://doi.org/10.1111/evo.13144
McDaniel, C.D., Bramwell, R.K., Howarth, B., 1996. The male contribution
to broiler breeder heat-induced infertility as determined by sperm-egg
penetration and sperm storage within the hen’s oviduct. Poult. Sci. 75,
1546–1554. https://doi.org/10.3382/ps.0751546
Meehl, G.A., Tebaldi, C., 2004. More Intense, More Frequent, and Longer
Lasting Heat Waves in the 21st Century. Science 305, 994–997.
https://doi.org/10.1126/science.1098704
Nguyen, T.M., Bressac, C., Chevrier, C., 2013. Heat stress affects male
reproduction in a parasitoid wasp. J. Insect Physiol. 59, 248–254.
https://doi.org/10.1016/j.jinsphys.2012.12.001
Parratt, S.R., Walsh, B.S., Metelmann, S., White, N., Manser, A.,
Bretman, A.J., Hoffmann, A.A., Snook, R.R., Price, T.A., 2020.
Temperatures that sterilise males better predict global species
distributions than lethal temperatures. bioRxiv 2020.04.16.043265.
https://doi.org/10.1101/2020.04.16.043265
Parratt, S.R., Walsh, B.S., Metelmann, S., White, N., Manser, A.,
Bretman, A.J., Hoffmann, A.A., Snook, R.R., Price, T.A.R., 2021.
Temperatures that sterilize males better match global species
distributions than lethal temperatures. Nat. Clim. Change 11, 481–484.
https://doi.org/10.1038/s41558-021-01047-0
Petavy, G., David, J.R., Gibert, P., Moreteau, B., 2001. Viability and
rate of development at different temperatures in Drosophila: a
comparison of constant and alternating thermal regimes. J. Therm. Biol.
26, 29–39. https://doi.org/10.1016/S0306-4565(00)00022-X
Prince, E., Kroeger, B., Gligorov, D., Wilson, C., Eaton, S., Karch, F.,
Brankatschk, M., Maeda, R.K., 2019. Rab-mediated trafficking in the
secondary cells of Drosophila male accessory glands and its role
in fecundity. Traffic 20, 137–151.
Rodrigues, L.R., McDermott, H.A., Villanueva, I., Djukarić, J., Ruf,
L.C., Amcoff, M., Snook, R.R., 2021. Fluctuating heat stress during
development exposes reproductive costs and putative benefits. J. Anim.
Ecol. 91, 391–403. https://doi.org/10.1111/1365-2656.13636
Rodrigues, L.R., Zwoinska, M.K., Wiberg, R.A.W., Snook, R.R., 2022. The
genetic basis and adult reproductive consequences of developmental
thermal plasticity. J. Anim. Ecol.
https://doi.org/10.1111/1365-2656.13664
Rohmer, C., David, J.R., Moreteau, B., Joly, D., 2004. Heat induced male
sterility in Drosophila melanogaster: adaptive genetic variations among
geographic populations and role of the Y chromosome. J. Exp. Biol. 207,
2735–2743. https://doi.org/10.1242/jeb.01087
Rubinstein, C.D., Wolfner, M.F., 2013. Drosophila seminal protein ovulin
mediates ovulation through female octopamine neuronal signaling. Proc.
Natl. Acad. Sci. 110, 17420–17425.
https://doi.org/10.1073/pnas.1220018110
Ruhmann, H., Wensing, K.U., Neuhalfen, N., Specker, J.-H., Fricke, C.,
2016. Early reproductive success in Drosophila males is dependent on
maturity of the accessory gland. Behav. Ecol. 27, 1859–1868.
https://doi.org/10.1093/beheco/arw123
Sales, K., Vasudeva, R., Dickinson, M.E., Godwin, J.L., Lumley, A.J.,
Michalczyk, Ł., Hebberecht, L., Thomas, P., Franco, A., Gage, M.J.G.,
2018. Experimental heatwaves compromise sperm function and cause
transgenerational damage in a model insect. Nat. Commun. 9, 4771.
https://doi.org/10.1038/s41467-018-07273-z
Seo, S.T., Vargas, R.I., Gilmore, J.E., Kurashima, R.S., Fujimoto, M.S.,
1990. Sperm Transfer in Normal and Gamma-Irradiated, Laboratory-Reared
Mediterranean Fruit Flies (Diptera: Tephritidae). J. Econ. Entomol. 83,
1949–1953. https://doi.org/10.1093/jee/83.5.1949
Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, H.F., Emlen, D.J.,
2007. Size and shape: the developmental regulation of static allometry
in insects. BioEssays 29, 536–548. https://doi.org/10.1002/bies.20584
Simmons, L.W., 2001. Sperm Competition and its Evolutionary Consequences
in the Insects. Princeton University Press.
Sinclair, B.J., Marshall, K.E., Sewell, M.A., Levesque, D.L., Willett,
C.S., Slotsbo, S., Dong, Y., Harley, C.D.G., Marshall, D.J., Helmuth,
B.S., Huey, R.B., 2016. Can we predict ectotherm responses to climate
change using thermal performance curves and body temperatures? Ecol.
Lett. 19, 1372–1385. https://doi.org/10.1111/ele.12686
Solomon, S., Manning, M., Marquis, M., Quin, D., 2007. Climate change
2007 : the physical science basis: contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge Univ. Press, New York.
Steinhauer, J., 2015. Separating from the pack: Molecular mechanisms of
Drosophila spermatid individualization. Spermatogenesis 5.
https://doi.org/10.1080/21565562.2015.1041345
Strüssmann, C.A., Saito, T., Takashima, F., 1998. Heat-induced germ cell
deficiency in the teleosts Odontesthes bonariensis and Patagonina
hatcheri. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 119,
637–644. https://doi.org/10.1016/s1095-6433(97)00477-7
Taylor, P.W., Kaspi, R., Mossinson, S., Yuval, B., 2001. Age-dependent
insemination success of sterile Mediterranean fruit flies. Entomol. Exp.
Appl. 98, 27–33. https://doi.org/10.1046/j.1570-7458.2001.00753.x
Trotta, V., Calboli, F.C., Ziosi, M., Guerra, D., Pezzoli, M.C., David,
J.R., Cavicchi, S., 2006. Thermal plasticity in Drosophila melanogaster:
A comparison of geographic populations. BMC Evol. Biol. 6, 67.
https://doi.org/10.1186/1471-2148-6-67
van Heerwaarden, B., Sgrò, C.M., 2021. Male fertility thermal limits
predict vulnerability to climate warming. Nat. Commun. 12, 2214.
https://doi.org/10.1038/s41467-021-22546-w
Vasudeva, R., Deeming, D.C., Eady, P.E., 2014. Developmental temperature
affects the expression of ejaculatory traits and the outcome of sperm
competition in Callosobruchus maculatus. J. Evol. Biol. 27, 1811–1818.
https://doi.org/10.1111/jeb.12431
Vasudeva, R., Sutter, A., Sales, K., Dickinson, M.E., Lumley, A.J.,
Gage, M.J., 2019. Adaptive thermal plasticity enhances sperm and egg
performance in a model insect. eLife 8.
https://doi.org/10.7554/eLife.49452
Walsh, B.S., Parratt, S.R., Hoffmann, A.A., Atkinson, D., Snook, R.R.,
Bretman, A., Price, T.A.R., 2019. The Impact of Climate Change on
Fertility. Trends Ecol. Evol. 34, 249–259.
https://doi.org/10.1016/j.tree.2018.12.002
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verl. N. Y.
Wolfner, M.F., 1997. Tokens of love: Functions and regulation of
drosophila male accessory gland products. Insect Biochem. Mol. Biol. 27,
179–192. https://doi.org/10.1016/S0965-1748(96)00084-7
Zeileis, A., Hothorn, T., 2002. Diagnostic Checking in Regression
Relationships. R News 2, 7–10.
Zheng, J., Cheng, X., Hoffmann, A.A., Zhang, B., Ma, C.-S., 2017. Are
adult life history traits in oriental fruit moth affected by a mild
pupal heat stress? J. Insect Physiol. 102, 36–41.
https://doi.org/10.1016/j.jinsphys.2017.09.004
Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009.
Mixed Effects Models and Extensions in Ecology with R, Statistics for
Biology and Health. Springer-Verlag, New York.
https://doi.org/10.1007/978-0-387-87458-6
Zwoinska, M.K., Rodrigues, L.R., Slate, J., Snook, R.R., 2020.
Phenotypic Responses to and Genetic Architecture of Sterility Following
Exposure to Sub-Lethal Temperature During Development. Front. Genet. 11.
https://doi.org/10.3389/fgene.2020.00573