Reference
  1. Martínez-Ahumada E, López-Olvera A, Jancik V, Sánchez-Bautista JE, González-Zamora E, Martis V, Williams DR, Ibarra IA. MOF materials for the capture of highly toxic H2S and SO2. Organometallics 2020; 39: 883-915.
  2. Zhu Q, Li F, Zheng Y, Cao Y, Xiao Y, Liang S, Liu F, Jiang L. Dual-template approach to designing nitrogen functionalized, hierarchical porous carbons for efficiently selective capture and separation of SO2. Sep. Purif. Technol. 2022; 284: 120272-120281.
  3. Xing S, Liang J, Brandt P, Schäfer F, Nuhnen A, Heinen T, Boldog I, Möllmer J, Lange M, Weingart O. Capture and separation of SO2 traces in metal–organic frameworks via pre‐synthetic pore environment tailoring by methyl groups. Angew. Chem. Int. Ed. 2021; 60: 17998-18005.
  4. Zhu R, Li G, Lei Z, Gui C. Mechanistic insight into absorption performance assessment for SO2 by mixed ionic liquids. J. Mol. Liq. 2021; 344: 117927-117935.
  5. Martínez-Ahumada E, Díaz-Ramírez ML, Lara-García HA, Williams DR, Martis V, Jancik V, Lima E, Ibarra IA. High and reversible SO2 capture by a chemically stable Cr(iii)-based MOF. J. Mater. Chem. A 2020; 8: 11515-11520.
  6. Ren Y-B, Xu H-Y, Gang S-Q, Gao Y-J, Jing X, Du J-L. An ultra-stable Zr (IV)-MOF for highly efficient capture of SO2 from SO2/CO2 and SO2/CH4 mixtures. Chem. Eng. J. 2022; 431: 134057-134064.
  7. Wang L, Zhang Y, Liu Y, Xie H, Xu Y, Wei J. SO2absorption in pure ionic liquids: Solubility and functionalization. J. Hazard. Mater. 2020; 392: 122504-122521.
  8. Liu X, Mao F-F, Li Z-M, Xu Z-H, Shu X-J, Mi J-P, Zhou Y, Tao D-J. Solidothermal synthesis of nitrogen-decorated, ordered mesoporous carbons with large surface areas for efficient selective capture and separation of SO2. Chem. Eng. J. 2022; 431: 134142-113131.
  9. Zhang L, Xiao L, Zhang Y, France LJ, Yu Y, Long J, Guo D, Li X. Synthesis of ionic liquid-SBA-15 composite materials and their application for SO2 capture from flue gas. Energy Fuels 2018; 32: 678-687.
  10. Huang R, Wu H, Yang L. Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. J. Environ. Sci. 2020; 92: 95-105.
  11. Mao F-F, Zhou Y, Zhu W, Sang X-Y, Li Z-M, Tao D-J. Synthesis of guanidinium-based poly(ionic liquids) with nonporosity for highly efficient SO2 capture from flue gas. Ind. Eng. Chem. Res. 2021; 60: 5984-5991.
  12. Zhang Z, Yang B, Ma H. Aliphatic amine decorating metal–organic framework for durable SO2 capture from flue gas. Sep. Purif. Technol. 2021; 259: 118164-118172.
  13. Martínez-Ahumada E, Díaz-Ramírez ML, Velásquez-Hernández MdJ, Jancik V, Ibarra IA. Capture of toxic gases in MOFs: SO2, H2S, NH3 and NOx. Chem. Sci. 2021; 12: 6772-6799.
  14. Chen F, Lai D, Guo L, Wang J, Zhang P, Wu K, Zhang Z, Yang Q, Yang Y, Chen B, Ren Q, Bao Z. Deep desulfurization with record SO2 adsorption on the metal–organic frameworks. J. Am. Chem. Soc. 2021; 143: 9040-9047.
  15. Savage M, Cheng Y, Easun TL, Eyley JE, Argent SP, Warren MR, Lewis W, Murray C, Tang CC, Frogley MD, Cinque G, Sun J, Rudić S, Murden RT, Benham MJ, Fitch AN, Blake AJ, Ramirez-Cuesta AJ, Yang S, Schröder M. Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv. Mater. 2016; 28: 8705-8711.
  16. Brandt P, Nuhnen A, Lange M, Möllmer J, Weingart O, Janiak C. Metal–organic frameworks with potential application for SO2 separation and flue gas desulfurization. ACS Appl. Mater. Inter. 2019; 11: 17350-17358.
  17. Brandt P, Xing S-H, Liang J, Kurt G, Nuhnen A, Weingart O, Janiak C. Zirconium and aluminum MOFs for low-Pressure SO2adsorption and potential separation: Elucidating the effect of small pores and NH2 groups. ACS Appl. Mater. Inter. 2021; 13: 29137-29149.
  18. Suo X, Yu Y, Qian S, Zhou L, Cui X, Xing H. Tailoring the pore size and chemistry of ionic ultramicroporous polymers for trace sulfur dioxide capture with high capacity and selectivity. Angew. Chem., Int. Ed. 2021; 60: 6986-6991.
  19. Cui X, Yang Q, Yang L, Krishna R, Zhang Z, Bao Z, Wu H, Ren Q, Zhou W, Chen B, Xing H. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 2017; 29: 1606929-1606937.
  20. Carter JH, Han X, Moreau FY, da Silva I, Nevin A, Godfrey HGW, Tang CC, Yang S, Schröder M. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J. Am. Chem. Soc. 2018; 140: 15564-15567.
  21. Mondal A, Balasubramanian S. Understanding SO2 capture by ionic liquids. The Journal of Physical Chemistry B 2016; 120: 4457-4466.
  22. Gao S, Zhang P, Wang Z, Cui G, Qiu J, Wang J. Ionic liquid functionalized 3D mesoporous FDU-12 foreffective SO2capture. ACS Sustainable Chem. Eng. 2020; 8: 586-593.
  23. Zeeshan M, Nozari V, Yagci M B, Isık T, Unal U, Ortalan V, Keskin S, Uzun A. Core−shell type ionic liquid/metal organic framework composite: an exceptionally high CO2/CH4 selectivity. J. Am. Chem. Soc. 2018; 140: 10113−10116.
  24. Han G, Liu C, Yang Q, Liu D, Zhong C. Construction of stable IL@MOF composite with multiple adsorption sites for efficient ammonia capture from dry and humid conditions. Chem. Eng. J. 2020; 401: 126106-126112.
  25. Han G, Yu N, Liu D, Yu G, Chen X, Zhong C. Stepped enhancement of CO2 adsorption and separation in IL-ZIF-IL composites with shell-interlayer-core structure. AIChE J. 2021; 67: 17112-17119.
  26. Gu X, Han G, Yang Q, Liu D. Confinement–Unconfinement Transformation of ILs in IL@MOF Composite with Multiple Adsorption Sites for Efficient Water Capture and Release. Adv. Mater. Interfaces 2022; 9: 2102354.
  27. Bromberg L, Diao Y, Wu H, Speakman SA, Hatton TA. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chem. Mater. 2012; 24: 1664-1675.
  28. Shin S, Yoo DK, Bae Y-S, Jhung SH. Polyvinylamine-loaded metal–organic framework MIL-101 for effective and selective CO2 adsorption under atmospheric or lower pressure. Chem. Eng. J. 2020; 389: 123429.
  29. Ferreira TJ, Ribeiro RPPL, Mota JPB, Rebelo LPN, Esperanca JMSS, Esteves IAAC. Ionic liquid-impregnated metal-organic frameworks for CO2/CH4 Separation. ACS Appl. Nano Mater. 2019; 2: 7933-7950.
  30. Mohamedali M, Ibrahim H, Henni A. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chem. Eng. J. 2018; 334: 817-828.
  31. Ferreira IC, Ferreira TJ, Barbosa AD, de Castro B, Ribeiro RP, Mota JP, Alves VD, Cunha-Silva L, Esteves IA, Neves LA. Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2021; 276: 119303.
  32. Long J, Dai W, Zou M, Li B, Zhang S, Yang L, Mao J, Mao P, Luo S, Luo X. Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101(Cr). Microporous Mesoporous Mater. 2021; 318: 111027-111037.
  33. Hassan HMA, Betiha MA, Mohamed SK, El-Sharkawy EA, Ahmed EA. Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst. open Journal of Molecular Liquids 2017; 236: 385-394.
  34. Xiong J, Zhu W, Li H, Xu Y, Jiang W, Xun S, Liu H, Zhao Z. Immobilized fenton‐like ionic liquid: Catalytic performance for oxidative desulfurization. AIChE J. 2013; 59: 4696-4704.
  35. Hajipour AR, Heidari Y, Kozehgary G. Silica grafted ammonium salts based on DABCO as heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides. RSC Adv. 2015; 5: 22373-22379.
  36. Lee G-Y, Lee J, Vo HT, Kim S, Lee H, Park T. Amine-functionalized covalent organic framework for efficient SO2 capture with high reversibility. Sci. Rep. 2017; 7: 1-10.
  37. Yin MJ, Xiong XH, Feng XF, Xu WY, Krishna R, Luo F. A robust cage-based metal–organic framework showing ultrahigh SO2 uptake for efficient removal of trace SO2 from SO2/CO2 and SO2/CO2/N2 mixtures. Inorg. Chem. 2021; 60: 3447-3451.
  38. Zhang Y, Chen Z, Liu X, Dong Z, Zhang P, Wang J, Deng Q, Zeng Z, Zhang S, Deng S. Efficient SO2 removal using a microporous metal–organic framework with molecular sieving effect. Ind. Eng. Chem. Res. 2020; 59: 874-882.
  39. Zhang Y, Chen Z, Liu X, Dong Z, Zhang P, Wang J, Deng Q, Zeng Z, Zhang S, Deng S. Efficient SO2 removal using a microporous metal-organic framework with molecular sieving effect. Ind. Eng. Chem. Res. 2020; 59: 874-882.
  40. Wang A, Fan R, Pi X, Hao S, Zheng X, Yang Y. N-doped porous carbon derived by direct carbonization of metal–organic complexes crystal materials for SO2 adsorption. Cryst. Growth Des. 2019; 19: 1973-1984.
  41. Gong W-Q, Wu X-L, Li Z-M, Zhou Y, Zhu W, Tao D-J. Sulfate ionic liquids impregnated 2D boron nitride nanosheets for trace SO2 capture with high capacity and selectivity. Sep. Purif. Technol. 2021; 270: 118824-118830.
  42. An X-C, Li Z-M, Zhou Y, Zhu W, Tao D-J. Rapid capture and efficient removal of low-concentration SO2 in simulated flue gas by hypercrosslinked hollow nanotube ionic polymers. Chem. Eng. J. 2020; 394: 124859-124866.
  43. Yi H, Wang Z, Liu H, Tang X, Ma D, Zhao S, Zhang B, Gao F, Zuo Y. Adsorption of SO2, NO, and CO2 on activated carbons: Equilibrium and thermodynamics. J. Chem. Eng. Data 2014; 59: 1556-1563.
  44. Chen K, Lin W, Yu X, Luo X, Ding F, He X, Li H, Wang C. Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas. AIChE J. 2015; 61: 2028-2034.
  45. Zhao J, Ren S, Hou Y, Zhang K, Wu W. SO2 absorption by carboxylate anion-based task-specific ionic liquids: effect of solvents and mechanism. Ind. Eng. Chem. Res. 2016; 55: 12919-12928.
  46. Yang D, Cui G, Lv M. Efficient absorption of SO2 by [Emim][Cl]–[Emim][SCN] ionic liquid mixtures. Energy Fuels 2018; 32: 10796-10800.
  47. Li G, Gui C, Dai C, Yu G, Lei Z. Molecular Insights into SO2 Absorption by [EMIM][Cl]-Based Deep Eutectic Solvents. ACS Sustainable Chem. Eng. 2021; 9: 13831-13841.
  48. Prasad BR, Senapati S. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. J. Phys. Chem. B 2009; 113: 4739-4743.
  49. Firaha DS, Kavalchuk M, Kirchner B. SO2 solvation in the 1-ethyl-3-methylimidazolium thiocyanate ionic liquid by incorporation into the extended cation–anion network. J. solution chem. 2015; 44: 838-849.