References
Andersson, U., Yang, H., Harris, H., 2018. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells.Semin. Immunol. 38, 40-48.
Aucott, H., Lundberg, J., Salo, H., Klevenvall, L., Damberg, P., Ottosson, L., Andersson, U., Holmin, S., Erlandsson Harris, H., 2018. Neuroinflammation in Response to Intracerebral Injections of Different HMGB1 Redox Isoforms. J. Innate Immun. 10, 215-227.
Bagheri, V., Khorramdelazad, H., Hassanshahi, G., Moghadam-Ahmadi, A., Vakilian, A., 2018. CXCL12 and CXCR4 in the Peripheral Blood of Patients with Parkinson’s Disease. Neuroimmunomodulation 25,201-205.
Baird, J.K., Bourdette, D., Meshul, C.K., Quinn, J.F., 2019. The key role of T cells in Parkinson’s disease pathogenesis and therapy.Parkinsonism Relat Disord 60, 25-31.
Bolte, A.C., Lukens, J.R., 2018. Th17 Cells in Parkinson’s Disease: The Bane of the Midbrain. Cell Stem Cell 23, 5-6.
Campana, L., Bosurgi, L., Bianchi, M.E., Manfredi, A.A., Rovere-Querini, P., 2009. Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells.J Leukoc Biol 86, 609-615.
Campolo, M., Paterniti, I., Siracusa, R., Filippone, A., Esposito, E., Cuzzocrea, S., 2019. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model.Brain Behav Immun 76, 236-247.
Chandra, G., Rangasamy, S.B., Roy, A., Kordower, J.H., Pahan, K., 2016. Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease. J Biol Chem291, 15267-15281.
Choi, D.J., Yang, H., Gaire, S., Lee, K.A., An, J., Kim, B.G., Jou, I., Park, S.M., Joe, E.H., 2020. Critical roles of astrocytic-CCL2-dependent monocyte infiltration in a DJ-1 knockout mouse model of delayed brain repair. Glia 68, 2086-2101.
Dutta, D., Kundu, M., Mondal, S., Roy, A., Ruehl, S., Hall, D.A., Pahan, K., 2019. RANTES-induced invasion of Th17 cells into substantia nigra potentiates dopaminergic cell loss in MPTP mouse model of Parkinson’s disease. Neurobiol Dis 132, 104575.
Elgueta, D., Contreras, F., Prado, C., Montoya, A., Ugalde, V., Chovar, O., Villagra, R., Henriquez, C., Abellanas, M.A., Aymerich, M.S., Franco, R., Pacheco, R., 2019. Dopamine Receptor D3 Expression Is Altered in CD4(+) T-Cells From Parkinson’s Disease Patients and Its Pharmacologic Inhibition Attenuates the Motor Impairment in a Mouse Model. Front. Immunol. 10, 981.
Fiszer, U., Mix, E., Fredrikson, S., Kostulas, V., Link, H., 1994. Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol. Scand. 90, 160-166.
Flaherty, S., Reynolds, J.M., 2015. Mouse Naive CD4+ T Cell Isolation and In vitro Differentiation into T Cell Subsets. J. Vis. Exp.
Galiano-Landeira, J., Torra, A., Vila, M., Bove, J., 2020. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143, 3717-3733.
Han, B.S., Hong, H.S., Choi, W.S., Markelonis, G.J., Oh, T.H., Oh, Y.J., 2003. Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J. Neurosci. 23, 5069-5078.
Harms, A.S., Thome, A.D., Yan, Z., Schonhoff, A.M., Williams, G.P., Li, X., Liu, Y., Qin, H., Benveniste, E.N., Standaert, D.G., 2018. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease.Exp Neurol 300, 179-187.
Huh, S.H., Chung, Y.C., Piao, Y., Jin, M.Y., Son, H.J., Yoon, N.S., Hong, J.Y., Pak, Y.K., Kim, Y.S., Hong, J.K., Hwang, O., Jin, B.K., 2011. Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson’s disease.J Immunol 187, 960-969.
Jhun, J., Lee, S., Kim, H., Her, Y.M., Byun, J.K., Kim, E.K., Lee, S.K., Cho, M.L., Choi, J.Y., 2015. HMGB1/RAGE induces IL-17 expression to exaggerate inflammation in peripheral blood cells of hepatitis B patients. J. Transl. Med. 13, 310.
Li, Y., Niu, M., Zhao, A., Kang, W., Chen, Z., Luo, N., Zhou, L., Zhu, X., Lu, L., Liu, J., 2019. CXCL12 is involved in alpha-synuclein-triggered neuroinflammation of Parkinson’s disease.J. Neuroinflammation 16, 263.
Liu, Z., Qiu, A.W., Huang, Y., Yang, Y., Chen, J.N., Gu, T.T., Cao, B.B., Qiu, Y.H., Peng, Y.P., 2019. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun 81, 630-645.
Palmblad, K., Schierbeck, H., Sundberg, E., Horne, A.C., Harris, H.E., Henter, J.I., Antoine, D.J., Andersson, U., 2015. High systemic levels of the cytokine-inducing HMGB1 isoform secreted in severe macrophage activation syndrome. Mol. Med. 20, 538-547.
Pillny, C., Nitsch, L., Proske-Schmitz, S., Sharma, A., Wullner, U., 2021. Abnormal subpopulations of monocytes in the cerebrospinal fluid of patients with Parkinson’s disease. Parkinsonism Relat Disord84, 144-145.
Rahimifard, M., Maqbool, F., Moeini-Nodeh, S., Niaz, K., Abdollahi, M., Braidy, N., Nabavi, S.M., Nabavi, S.F., 2017. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 36, 11-19.
Reynolds, A.D., Stone, D.K., Hutter, J.A., Benner, E.J., Mosley, R.L., Gendelman, H.E., 2010. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184, 2261-2271.
Santaella, A., Kuiperij, H.B., van Rumund, A., Esselink, R.A.J., van Gool, A.J., Bloem, B.R., Verbeek, M.M., 2020. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. NPJ Parkinsons Dis 6, 21.
Santoro, M., Maetzler, W., Stathakos, P., Martin, H.L., Hobert, M.A., Rattay, T.W., Gasser, T., Forrester, J.V., Berg, D., Tracey, K.J., Riedel, G., Teismann, P., 2016. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol Dis91, 59-68.
Sasaki, T., Liu, K., Agari, T., Yasuhara, T., Morimoto, J., Okazaki, M., Takeuchi, H., Toyoshima, A., Sasada, S., Shinko, A., Kondo, A., Kameda, M., Miyazaki, I., Asanuma, M., Borlongan, C.V., Nishibori, M., Date, I., 2016. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp Neurol 275 Pt 1,220-231.
Schiraldi, M., Raucci, A., Munoz, L.M., Livoti, E., Celona, B., Venereau, E., Apuzzo, T., De Marchis, F., Pedotti, M., Bachi, A., Thelen, M., Varani, L., Mellado, M., Proudfoot, A., Bianchi, M.E., Uguccioni, M., 2012. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209, 551-563.
Shimoji, M., Pagan, F., Healton, E.B., Mocchetti, I., 2009. CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res 16, 318-328.
Su, Z., Sun, C., Zhou, C., Liu, Y., Zhu, H., Sandoghchian, S., Zheng, D., Peng, T., Zhang, Y., Jiao, Z., Wang, S., Xu, H., 2011. HMGB1 blockade attenuates experimental autoimmune myocarditis and suppresses Th17-cell expansion. Eur. J. Immunol. 41, 3586-3595.
Subbarayan, M.S., Hudson, C., Moss, L.D., Nash, K.R., Bickford, P.C., 2020. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an alpha-synuclein rat model of Parkinson’s disease. J. Neuroinflammation 17, 242.
Tanabe, S., Heesen, M., Yoshizawa, I., Berman, M.A., Luo, Y., Bleul, C.C., Springer, T.A., Okuda, K., Gerard, N., Dorf, M.E., 1997. Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol 159, 905-911.
Tentillier, N., Etzerodt, A., Olesen, M.N., Rizalar, F.S., Jacobsen, J., Bender, D., Moestrup, S.K., Romero-Ramos, M., 2016. Anti-Inflammatory Modulation of Microglia via CD163-Targeted Glucocorticoids Protects Dopaminergic Neurons in the 6-OHDA Parkinson’s Disease Model. J. Neurosci. 36, 9375-9390.
Tian, Y., Cao, Y., Chen, R., Jing, Y., Xia, L., Zhang, S., Xu, H., Su, Z., 2020. HMGB1 A box protects neurons by potently inhibiting both microglia and T cell-mediated inflammation in a mouse Parkinson’s disease model. Clin. Sci. 134, 2075-2090.
Tian, Y., Chen, R., Su, Z., 2021. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson’s Disease. Cell Mol Neurobiol .
Tirone, M., Tran, N.L., Ceriotti, C., Gorzanelli, A., Canepari, M., Bottinelli, R., Raucci, A., Di Maggio, S., Santiago, C., Mellado, M., Saclier, M., Francois, S., Careccia, G., He, M., De Marchis, F., Conti, V., Ben Larbi, S., Cuvellier, S., Casalgrandi, M., Preti, A., Chazaud, B., Al-Abed, Y., Messina, G., Sitia, G., Brunelli, S., Bianchi, M.E., Venereau, E., 2018. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 215, 303-318.
Venereau, E., Casalgrandi, M., Schiraldi, M., Antoine, D.J., Cattaneo, A., De Marchis, F., Liu, J., Antonelli, A., Preti, A., Raeli, L., Shams, S.S., Yang, H., Varani, L., Andersson, U., Tracey, K.J., Bachi, A., Uguccioni, M., Bianchi, M.E., 2012. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release.J Exp Med 209, 1519-1528.
Xie, X., Luo, X., Liu, N., Li, X., Lou, F., Zheng, Y., Ren, Y., 2017. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem 141, 222-235.
Yang, H., Hreggvidsdottir, H.S., Palmblad, K., Wang, H., Ochani, M., Li, J., Lu, B., Chavan, S., Rosas-Ballina, M., Al-Abed, Y., Akira, S., Bierhaus, A., Erlandsson-Harris, H., Andersson, U., Tracey, K.J., 2010. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl. Acad. Sci. U. S. A. 107, 11942-11947.
Yang, H., Wang, H., Ju, Z., Ragab, A.A., Lundback, P., Long, W., Valdes-Ferrer, S.I., He, M., Pribis, J.P., Li, J., Lu, B., Gero, D., Szabo, C., Antoine, D.J., Harris, H.E., Golenbock, D.T., Meng, J., Roth, J., Chavan, S.S., Andersson, U., Billiar, T.R., Tracey, K.J., Al-Abed, Y., 2015. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling.J Exp Med 212, 5-14.
Zimmermann, K., Volkel, D., Pable, S., Lindner, T., Kramberger, F., Bahrami, S., Scheiflinger, F., 2004. Native versus recombinant high-mobility group B1 proteins: functional activity in vitro.Inflammation 28, 221-229.