REFERENCES
1. Bello, R., & Falcon, R. (2017). Rough sets in machine learning: A
review. In Thriving Rough Sets (pp. 87-118). Springer, Cham.
2. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of
interpretable machine learning. arXiv preprint arXiv:1702.08608 .
3. Hassanien, A. E., Abdelhafez, M. E., & Own, H. S. (2008). Rough Sets
Data Analysis in Knowledge Discovery: A Case of Kuwaiti Diabetic
Children Patients. Advances in Fuzzy Systems .
4. Janusz, A., & Ślęzak, D. (2014). Rough set methods for attribute
clustering and selection. Applied Artificial
Intelligence , 28 (3), 220-242.
5. Molnar, C. (2019). Interpretable machine learning . Lulu. com.
6. Molnar, C., Casalicchio, G., & Bischl, B. (2020). Interpretable Machine
Learning–A Brief History, State-of-the-Art, and
Challenges. arXiv preprint arXiv:2010.09337 .
7. Richardson, A., & Rosenfeld, A. (2018, July). A survey of
interpretability and explainability in human-agent systems. In XAI
Workshop on Explainable Artificial Intelligence (pp. 137-143).
8. Rissino, S., & Lambert-Torres, G. (2009). Rough set
theory—fundamental concepts, principals, data extraction, and
applications. In Data mining and knowledge discovery in real-life
applications . IntechOpen.
9. Shi, L., Weng, M., Ma, X., & Xi, L. (2010). Rough set-based decision
tree ensemble algorithm for text classification. Journal of
Computational Information Systems , 6 (1), 89-95.
10. Vijaya, J., & Sivasankar, E. (2018). Computing efficient features using
rough set theory combined with ensemble classification techniques
improves customer churn prediction in the telecommunication
sector. Computing , 100 (8), 839-860.
11. Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard
process model for data mining. In Proceedings of the 4th
international conference on the practical applications of knowledge
discovery and data mining (pp. 29-39). London, UK: Springer-Verlag.
12. Widz, S., & Ślęzak, D. (2012). Rough set-based decision
support—models easy to interpret. Rough Sets: Selected Methods
and Applications in Management and Engineering (pp. 95-112). Springer,
London.