References
Ahmadi, M., Hemami, M.-R., Kaboli, M., Malekian, M., Zimmermann, N.E., 2019. Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Scientific Reports 9, 1-12.
Ahmadi, M., Hemami, M.-R., Kaboli, M., Nazarizadeh, M., Malekian, M., Behrooz, R., Geniez, P., Alroy, J., Zimmermann, N.E., 2021. The legacy of Eastern Mediterranean mountain uplifts: rapid disparity of phylogenetic niche conservatism and divergence in mountain vipers. BMC Ecology and Evolution 21, 1-13.
Ahmadi, M., Naderi, M., Kaboli, M., Nazarizadeh, M., Karami, M., Beitollahi, S.M., 2018. Evolutionary applications of phylogenetically-informed ecological niche modelling (ENM) to explore cryptic diversification over cryptic refugia. Molecular Phylogenetics and Evolution 127, 712-722.
Ahmadzadeh, F., Flecks, M., Carretero, M.A., Böhme, W., Ihlow, F., Kapli, P., Miraldo, A., Rödder, D., 2016. Separate histories in both sides of the Mediterranean: phylogeny and niche evolution of ocellated lizards. Journal of Biogeography 43, 1242–1253.
Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., 2019. Standards for distribution models in biodiversity assessments. Science Advances 5, eaat4858.
Araújo, M.B., Guisan, A., 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33, 1677-1688.
Behrooz, R., Kaboli, M., Arnal, V., Nazarizadeh, M., Asadi, A., Salmanian, A., Ahmadi, M., Montgelard, C., 2018. Conservation Below the Species Level: Suitable Evolutionarily Significant Units among Mountain Vipers (the Montivipera raddei complex) in Iran. Journal of Heredity 109, 416-425.
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological modelling 275, 73-77.
Boucher, F.C., Zimmermann, N.E., Conti, E., 2015. Allopatric speciation with little niche divergence is common among Alpine Primulaceae. Journal of Biogeography 43, 591-602.
Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Brito, J.C., Acosta, A.L., Álvares, F., Cuzin, F., 2009. Biogeography and conservation of taxa from remote regions: an application of ecological-niche based models and GIS to North-African Canids. Biological Conservation 142, 3020-3029.
Candel, A., Parmar, V., LeDell, E., Arora, A., 2016. Deep learning with H2O. H2O. ai Inc, 1-21.
Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random forests, Ensemble machine learning. Springer, pp. 157-175.
De’ath, G., Fabricius, K.E., 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178-3192.
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609-628.
El‐Gabbas, A., Dormann, C.F., 2018a. Improved species‐occurrence predictions in data‐poor regions: using large‐scale data and bias correction with down‐weighted Poisson regression and Maxent. Ecography 41, 1161-1172.
El‐Gabbas, A., Dormann, C.F., 2018b. Wrong, but useful: regional species distribution models may not be improved by range‐wide data under biased sampling. Ecology and evolution 8, 2196-2206.
Elith, J., Graham, C.H., 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 66-77.
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., S. Wisz, M., E. Zimmermann, N., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129-151.
Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range‐shifting species. Methods in ecology and evolution 1, 330-342.
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802-813.
Farhadinia, M.S., Ahmadi, M., Sharbafi, E., Khosravi, S., Alinezhad, H., Macdonald, D.W., 2015. Leveraging trans-boundary conservation partnerships: Persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biological Conservation 191, 770-778.
Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation 24, 38-49.
Fithian, W., Elith, J., Hastie, T., Keith, D.A., 2015. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods in Ecology and Evolution 6, 424-438.
Franklin, J., 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
Friedman, J.H., 2017. The elements of statistical learning: Data mining, inference, and prediction. springer open.
Galante, P.J., Alade, B., Muscarella, R., Jansa, S.A., Goodman, S.M., Anderson, R.P., 2018. The challenge of modeling niches and distributions for data‐poor species: a comprehensive approach to model complexity. Ecography 41, 726-736.
Guevara, L., Gerstner, B.E., Kass, J.M., Anderson, R.P., 2018. Toward ecologically realistic predictions of species distributions: A cross‐time example from tropical montane cloud forests. Global change biology 24, 1511-1522.
Guillera‐Arroita, G., Lahoz‐Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R., Wintle, B.A., 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24, 276-292.
Guisan, A., Graham, C.H., Elith, J., Huettmann, F., Group, N.S.D.M., 2007. Sensitivity of predictive species distribution models to change in grain size. Diversity and distributions 13, 332-340.
Hardin, J.W., Hardin, J.W., Hilbe, J.M., Hilbe, J., 2007. Generalized linear models and extensions. Stata press.
Hemami, M.-R., Esmaeili, S., Brito, J.C., Ahmadi, M., Omidi, M., Martínez-Freiría, F., 2018. Using ecological models to explore niche partitioning within a guild of desert felids. Hystrix, the Italian Journal of Mammalogy 29, 216-222.
Hijmans, R.J., 2012. Cross‐validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679-688.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International journal of climatology 25, 1965-1978.
Hortal, J., Jiménez-Valverde, A., Gómez, J.F., Lobo , J.M., Baselga, A., 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847-858.
Jiang, Z., Huete, A.R., Didan, K., Miura, T., 2008. Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment 112, 3833-3845.
Jiménez‐Valverde, A., 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography 21, 498-507.
Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla‐Buitrago, G.E., Boria, R.A., Soley‐Guardia, M., Anderson, R.P., 2021. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12, 1602-1608.
Kindt, R., 2018. Ensemble species distribution modelling with transformed suitability values. Environmental Modelling & Software 100, 136-145.
Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., Wilting, A., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19, 1366–1379.
Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-90. https://CRAN.R-project.org/package=caret.
Lentini, P.E., Wintle, B.A., 2015. Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates and species distribution model type. Ecography 38, 1101-1111.
Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385-393.
Lobo, J.M., Jiménez‐Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography 17, 145-151.
Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267-1281.
Muscarella, R., Galante, P.J., Soley‐Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., 2014. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in ecology and evolution 5, 1198-1205.
Naimi, B., 2015. usdm: uncertainty analysis for species distribution models. R package version 1.1-15, R Documentation http://www.rdocu‑mentation.org/packages/usdm.
Osborne, J.W., Waters, E., 2002. Four assumptions of multiple regression that researchers should always test. Practical assessment, research, and evaluation 8, 2.
Pearman, P.B., D’Amen, M., Graham, C.H., Thuiller, W., Zimmermann, N.E., 2010. Within‐taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33, 990-1003.
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190, 231-259.
Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175.
Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecological applications 19, 181-197.
Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P., Guisan, A., 2013. The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography 22, 52-63.
Radosavljevic, A., Anderson, R.P., 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of biogeography 41, 629-643.
Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M., Guisan, A., 2006. Are niche‐based species distribution models transferable in space? Journal of biogeography 33, 1689-1703.
Rebelo, H., Jones, G., 2010. Ground validation of presence‐only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology 47, 410-420.
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A., Ricotta, C., Bacaro, G., Chiarucci, A., 2011. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography 35, 211-226.
Saladin, B., Thuiller, W., Graham, C.H., Lavergne, S., Maiorano, L., Salamin, N., Zimmermann, N.E., 2019. Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature communications 10, 249.
Shabani, F., Ahmadi, M., Peters, K.J., Haberle, S., Champreux, A., Saltré, F., Bradshaw, C.J., 2019. Climate‐driven shifts in the distribution of koala‐browse species from the Last Interglacial to the near future. Ecography 42, 1587-1599.
Shabani, F., Kumar, L., Ahmadi, M., 2016. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and evolution 6, 5973-5986.
Stolar, J., Nielsen, S.E., 2015. Accounting for spatially biased sampling effort in presence‐only species distribution modelling. Diversity and Distributions 21, 595-608.
Stümpel, N., Rajabizadeh, M., Avcı, A., Wüster, W., Joger, U., 2016. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple Plio–Pleistocene refugia and high-mountain topography in the Near and Middle East. Molecular phylogenetics and evolution 101, 336-351.
Tessarolo, G., Rangel, T.F., Araújo, M.B., Hortal, J., 2014. Uncertainty associated with survey design in Species Distribution Models. Diversity and Distributions 20, 1258-1269.
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369-373.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., Araujo, M.B., 2011. Consequences of climate change on the tree of life in Europe. Nature 470, 531-534.
Thuiller, W., Richardson, D.M., PYŠEK, P., Midgley, G.F., Hughes, G.O., Rouget, M., 2005. Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11, 2234-2250.
Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences 111, 10233-10238.
Vale, C.G., Tarroso, P., Brito, J.C., 2014. Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Diversity and Distributions 20, 20-33.
Veloz, S.D., 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models. Journal of biogeography 36, 2290-2299.
Waltari, E., Guralnick, R.P., 2009. Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography 36, 148-161.
Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological applications 21, 335-342.
Wiens, J.J., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences 106, 19729-19736.
Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., Guisan, A., Group, N.P.S.D.W., 2008. Effects of sample size on the performance of species distribution models. Diversity and distributions 14, 763-773.
Yousefi, M., Ahmadi, M., Nourani, E., Rezaei, A., Kafash, A., Khani, A., Sehhatisabet, M.E., Adibi, M.A., Goudarzi, F., Kaboli, M., 2017. Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird Conservation International 27, 294-304.
Zupan, L., Cabeza, M., Maiorano, L., Roquet, C., Devictor, V., Lavergne, S., Mouillot, D., Mouquet, N., Renaud, J., Thuiller, W., 2014. Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions 20, 674-685.