REFERENCES
Benson, G. (1999). Tandem repeats finder: a program to analyze DNA
sequences. Nucleic acids research , 27(2), 573–580.
Cao, L. J., Song, W., Yue, L., Guo, S. K., Chen, J. C., Gong, Y. J.,
Hoffmann A. A., & Wei, S. J.
(2021).
Chromosome‐level genome of the peach fruit moth Carposina sasakii(Lepidoptera: Carposinidae) provides a resource for evolutionary studies
on moths. Molecular Ecology Resources , 21(3), 834–848.
https://doi.org/10.1111/1755-0998.13288.
Chen, Y.-M., Pekdemir, S., Bilican, I., Koc-Bilican, B., Cakmak, B.,
Ali, A., Zang, L.-S., Onses, M., & Kaya, M. (2021a).
Production
of natural chitin film from pupal shell of moth: Fabrication of
plasmonic surfaces for SERS-based sensing applications.Carbohydrate Polymers , 262, 117909.
https://doi.org/10.1016/j.carbpol.2021.117909.
Chen, Y.-M., Qu, X.-R., Li, T.-H., Iqbal, A., Wang, X.-G., Ren, Z.-Y.,
Desneux, N., & Zang, L.-S. (2021b). Performances of six eupelmid egg
parasitoids from China on Japanese giant silkworm Caligula japonica
with different host age regimes. Journal of Pest Science , 94,
309–319.
Chen, Y.-M., Zang, L.-S., Koc-Bilican, B., Bilican, I., Holland, C.,
Cansaran-Duman, D., Karaduman, T., Çolak, A., Bayır, Y., Halici, Z.,
Ozmen, S., Ali, A., Labidi, J., Elbuken, C., & Kaya, M. (2022).
Macroporous Surgical Mesh from a Natural Cocoon Composite. ACS
Sustainable Chemistry & Engineering , 10(18), 5728–5738.
https://doi.org/10.1021/acssuschemeng.1c06941.
Denlinger, D. L. (1985). Hormonal control of diapause.Comprehensive Insect Physiology, Biochemistry and Pharmacology ,
8, 353–412.
Denlinger, D. L. (2002). Regulation of diapause. Annual Review of
Entomology , 47(1), 93–122.
Emms, D. M., & Kelly, S. (2015). OrthoFinder: solving fundamental
biases in whole genome comparisons dramatically improves orthogroup
inference accuracy. Genome Biology , 16(1), 1–14.
https://doi.org/10.1186/s13059-015-0721-2.
Emms, D.M. & Kelly, S. (2019). OrthoFinder: phylogenetic orthology
inference for comparative genomics. Genome Biology , 20(1), 1–14.
https://doi.org/10.1186/s13059-019-1832-y.
Goto, M., & Hukushima, H. (1995). Factors affecting the induction of
summer and winter-diapause and diapause sensitive larval stage of
cabbage-armyworm [Brassica oleracea capitata] moth Mamestra
brassicae (Lepidoptera: Noctuidae). Journal of the Yamagata
Agriculture and Forestry Society (Japan) , 52, 17-23.
Gremme, G., Brendel, V., Sparks, M. E., & Kurtz, S. (2005). Engineering
a software tool for gene structure prediction in higher organisms.Information and Software Technology , 47(15), 965–978.
https://doi.org/10.1016/j.infsof.2005.09.005.
Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis,
J., White, O., Buell, R. C., & Wortman, J. R. (2008). Automated
eukaryotic gene structure annotation using EVidenceModeler and the
Program to Assemble Spliced Alignments. Genome Biology , 9(1), R7.
https://doi.org/10.1186/gb-2008-9-1-r7.
Han, M. V., Thomas, G. W., Lugo-Martinez, J., & Hahn, M. W. (2013).
Estimating gene gain and loss rates in the presence of error in genome
assembly and annotation using CAFE 3. Molecular Biology and
Evolution , 30(8), 1987–1997. https://doi.org/10.1093/molbev/mst100.
He, K., Lin, K., Wang, G., & Li, F. (2016). Genome sizes of nine insect
species determined by flow cytometry and k-mer analysis. Frontiers
in Physiology , 7, 569. https://doi.org/10.3389/fphys.2016.00.
Ikeno, T., Numata, H., & Goto, S. G. (2011). Photoperiodic response
requires mammalian-type cryptochrome in the bean bug Riptortus
pedestris. Biochemical and Biophysical Research Communications ,
410(3), 394–397. https://doi.org/10.1016/j.bbrc.2011.05.142.
Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO:
assessing genomic data quality and beyond. Current Protocols ,
1(12), e323. https://doi.org/10.1002/cpz1.323.
Mei, Y., Jing, D., Tang, S., Chen, X., Chen, H., Duanmu, H., Cong, Y.
Y., Chen, M.Y., Ye, X. H., Zhou, H., He, K., & Li, F. (2022).
InsectBase 2.0: a comprehensive gene resource for insects. Nucleic
Acids Research , 50(D1), D1040–D1045.
https://doi.org/10.1093/nar/gkab1090.
Meuti, M. E., & Denlinger, D. L. (2013). Evolutionary links between
circadian clocks and photoperiodic diapause in insects.Integrative and Comparative Biology , 53(1), 131–143.
https://doi.org/10.1093/icb/ict023.
Pavelka, J. A., Shimada, K. I., & Kostal, V. L. (2003). TIMELESS: A
link between fly’s circadian and photoperiodic clocks? European
Journal of Entomology , 100(2),
255–265.https://doi.org/10.14411/eje.2003.041.
Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn,
R. D. (2018). HMMER web server: 2018 update. Nucleic Acids
Research , 46(W1), W200–W204. https://doi.org/10.1093/nar/gky448.
Sandrelli, F., Costa, R., Kyriacou, C. P., & Rosato, E. (2008).
Comparative analysis of circadian clock genes in insects. Insect
Molecular Biology, 17(5), 447–463.
https://doi.org/10.1111/j.1365-2583.2008.00832.x.
Saunders, D. S., Henrich, V. C., & Gilbert, L. I. (1989). Induction of
diapause in Drosophila melanogaster: photoperiodic regulation and the
impact of arrhythmic clock mutations on time measurement.Proceedings of the National Academy of Sciences , 86(10),
3748–3752. https://doi.org/10.1073/pnas.86.10.3748.
Tomioka, K., & Matsumoto, A. (2010). A comparative view of insect
circadian clock systems. Cellular and Molecular Life Sciences ,
67(9), 1397-1406. https://doi.org/10.1007/s00018-009-0232-y.
Tsuchiya, R., Kaneshima, A., Kobayashi, M., Yamazaki, M., Takasu, Y.,
Sezutsu, H., Tanaka, Y., Mizoguchi, A., & Shiomi, K. (2021). Maternal
GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of
the silkworm Bombyx mori . Proceedings of the National
Academy of Sciences , 118(1), e2020028118.
https://doi.org/10.1073/pnas.2020028118.
Xiao, H. J., Mou, F. C., Zhu, X. F., & Xue, F. S. (2010). Diapause
induction, maintenance and termination in the rice stem borerChilo suppressalis (Walker). Journal of Insect Physiology ,
56(11), 1558–1564. https://doi.org/10.1016/j.jinsphys.2010.05.012.
Yuan, Q., Metterville, D., Briscoe, A. D., & Reppert, S. M. (2007).
Insect cryptochromes: gene duplication and loss define diverse ways to
construct insect circadian clocks. Molecular Biology and
Evolution , 24(4), 948–955. https://doi.org/10.1093/molbev/msm011.
TABLE 1 Summary of chromosome-level assembly for Caligula
japonica.