References
[1] BRACKEN A P, HELIN K. Polycomb group proteins: navigators of lineage pathways led astray in cancer [J]. Nat Rev Cancer, 2009, 9(11): 773-84.
[2] SIMON J A, LANGE C A. Roles of the EZH2 histone methyltransferase in cancer epigenetics [J]. Mutat Res, 2008, 647(1-2): 21-9.
[3] HE A, SHEN X, MA Q, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity [J]. Genes Dev, 2012, 26(1): 37-42.
[4] KIM J, LEE Y, LU X, et al. Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator [J]. Cell Rep, 2018, 25(10): 2808-20 e4.
[5] WU Z L, ZHENG S S, LI Z M, et al. Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression [J]. Cell Death Differ, 2010, 17(5): 801-10.
[6] YAN K S, LIN C Y, LIAO T W, et al. EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe? [J]. Int J Mol Sci, 2017, 18(6).
[7] ZHOU L, MUDIANTO T, MA X, et al. Targeting EZH2 Enhances Antigen Presentation, Antitumor Immunity, and Circumvents Anti-PD-1 Resistance in Head and Neck Cancer [J]. Clin Cancer Res, 2020, 26(1): 290-300.
[8] WU S Y, XIE Z Y, YAN L Y, et al. The correlation of EZH2 expression with the progression and prognosis of hepatocellular carcinoma [J]. BMC Immunol, 2022, 23(1): 28.
[9] PAN Y M, WANG C G, ZHU M, et al. STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer [J]. Mol Cancer, 2016, 15(1): 79.
[10] JULIA E, SALLES G. EZH2 inhibition by tazemetostat: mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma [J]. Future Oncol, 2021, 17(17): 2127-40.
[11] SIMEONE N, FREZZA A M, ZAFFARONI N, et al. Tazemetostat for advanced epithelioid sarcoma: current status and future perspectives [J]. Future Oncol, 2021, 17(10): 1253-63.
[12] XIA L, ZHU X, ZHANG L, et al. EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer [J]. Biotechnol Appl Biochem, 2020, 67(6): 1011-9.
[13] DUAN R, DU W, GUO W. EZH2: a novel target for cancer treatment [J]. J Hematol Oncol, 2020, 13(1): 104.
[14] WANG X, WANG D, DING N, et al. The Synergistic Anti-Tumor Activity of EZH2 Inhibitor SHR2554 and HDAC Inhibitor Chidamide through ORC1 Reduction of DNA Replication Process in Diffuse Large B Cell Lymphoma [J]. Cancers (Basel), 2021, 13(17).
[15] SONG Y, LIU Y, LI Z M, et al. SHR2554, an EZH2 inhibitor, in relapsed or refractory mature lymphoid neoplasms: a first-in-human, dose-escalation, dose-expansion, and clinical expansion phase 1 trial [J]. Lancet Haematol, 2022, 9(7): e493-e503.
[16] DENG K, ZOU Y, ZOU C, et al. Study on pharmacokinetic interactions between SHR2554 and itraconazole in healthy subjects: A single-center, open-label phase I trial [J]. Cancer Med, 2023, 12(2): 1431-40.
[17] NIEMI M, BACKMAN J T, FROMM M F, et al. Pharmacokinetic interactions with rifampicin : clinical relevance [J]. Clin Pharmacokinet, 2003, 42(9): 819-50.
[18] SVENSSON R J, AARNOUTSE R E, DIACON A H, et al. A Population Pharmacokinetic Model Incorporating Saturable Pharmacokinetics and Autoinduction for High Rifampicin Doses [J]. Clin Pharmacol Ther, 2018, 103(4): 674-83.
[19] ABULFATHI A A, DECLOEDT E H, SVENSSON E M, et al. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis [J]. Clin Pharmacokinet, 2019, 58(9): 1103-29.
[20] CLEWE O, GOUTELLE S, CONTE J E, JR., et al. A pharmacometric pulmonary model predicting the extent and rate of distribution from plasma to epithelial lining fluid and alveolar cells–using rifampicin as an example [J]. Eur J Clin Pharmacol, 2015, 71(3): 313-9.
[21] HSUEH C H, ANDERSON K, SHEN G, et al. Evaluation of the potential drug interactions mediated through P-gp, OCT2, and MATE1/2K with filgotinib in healthy subjects [J]. Clin Transl Sci, 2022, 15(2): 361-70.
[22] TANIGAWARA Y. Role of P-glycoprotein in drug disposition [J]. Ther Drug Monit, 2000, 22(1): 137-40.
[23] FROMM M F. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs [J]. Int J Clin Pharmacol Ther, 2000, 38(2): 69-74.
[24] FUNAKOSHI S, MURAKAMI T, YUMOTO R, et al. Role of P-glycoprotein in pharmacokinetics and drug interactions of digoxin and beta-methyldigoxin in rats [J]. J Pharm Sci, 2003, 92(7): 1455-63.
[25] YAMAZAKI S, COSTALES C, LAZZARO S, et al. Physiologically-Based Pharmacokinetic Modeling Approach to Predict Rifampin-Mediated Intestinal P-Glycoprotein Induction [J]. CPT Pharmacometrics Syst Pharmacol, 2019, 8(9): 634-42.
[26] LIU L, COLLIER A C, LINK J M, et al. Modulation of P-glycoprotein at the Human Blood-Brain Barrier by Quinidine or Rifampin Treatment: A Positron Emission Tomography Imaging Study [J]. Drug Metab Dispos, 2015, 43(11): 1795-804.
[27] ELMELIEGY M, VOURVAHIS M, GUO C, et al. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug-Drug Interaction Studies [J]. Clin Pharmacokinet, 2020, 59(6): 699-714.
[28] POLASA K, KRISHNASWAMY K. Effect of food on bioavailability of rifampicin [J]. J Clin Pharmacol, 1983, 23(10): 433-7.
[29] ZENT C, SMITH P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide [J]. Tuber Lung Dis, 1995, 76(2): 109-13.
[30] PELOQUIN C A, NAMDAR R, SINGLETON M D, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids [J]. Chest, 1999, 115(1): 12-8.
[31] SIEGLER D I, BRYANT M, BURLEY D M, et al. Effect of meals on rifampicin absorption [J]. Lancet, 1974, 2(7874): 197-8.