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Abstract19

Next-generation sequencing of pooled samples (Pool-seq) is a popular method to20

assess genome-wide diversity patterns in natural and experimental populations.21

However, Pool-seq is associated with specific sources of noise, such as unequal22

individual contributions. Consequently, using Pool-seq for the reconstruction of23

evolutionary history has remained underexplored. Here we describe a novel Ap-24

proximate Bayesian Computation (ABC) method to infer demographic history,25

explicitly modeling Pool-seq sources of error. By jointly modeling Pool-seq26
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data, demographic history and the effects of selection due to barrier loci, we27

obtain estimates of demographic history parameters accounting for technical28

errors associated with Pool-seq. Our ABC approach is computationally efficient29

as it relies on simulating subsets of loci (rather than the whole-genome), and30

on using relative summary statistics and relative model parameters. Our sim-31

ulation study results indicate Pool-seq data allows distinction between general32

scenarios of ecotype formation (single versus parallel origin), and to infer rele-33

vant demographic parameters (e.g., effective sizes, split times). We exemplify34

the application of our method to Pool-seq data from the rocky-shore gastropod35

Littorina saxatilis, sampled on a narrow geographical scale at two Swedish lo-36

cations where two ecotypes (Wave and Crab) are found. Our model choice and37

parameter estimates show that ecotypes formed before colonization of the two38

locations (i.e., single origin) and are maintained despite gene flow. These results39

indicate that demographic modeling and inference can be successful based on40

pool-sequencing using ABC, contributing to the development of suitable null41

models that allow for a better understanding of the genetic basis of divergent42

adaptation.43

Keywords: Pool-seq, demographic inference, Approximate Bayesian Compu-44

tation, R package, ecotype formation45

Introduction46

Population genomics data can be used to infer the complex demographic and47

adaptive processes that have shaped natural populations. Next Generation Se-48

quencing (NGS) has revolutionized the field of population genomics, allowing49

reconstruction of evolutionary histories using thousands of SNPs across the50

genome (Ellegren, 2014). However, generating and sequencing individual li-51
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braries can be expensive and difficult for certain species (e.g., small organisms).52

In such cases, an effective alternative is to combine DNA from various indi-53

viduals, producing a single library that is then sequenced (Pool-seq). NGS of54

pooled samples requires less DNA per individual, reducing the necessary lab-55

oratory work by decreasing the number of library preparations needed. This56

results in decreased costs while still allowing the comparison of populations on57

a genomic scale (Schlötterer, Tobler, Kofler, & Nolte, 2014). However, pooling58

introduces challenges in data analysis due to non-equimolar DNA concentra-59

tions and stochastic variation in amplification or sequencing efficiency, which60

can result in loss of accuracy of allele frequency estimates (Anderson, Skaug, &61

Barshis, 2014; Cutler & Jensen, 2010; Ellegren, 2014). Furthermore, DNA from62

multiple individuals can be extracted in batches, combining multiple batches63

into a single pool for library preparation and sequencing (Morales et al., 2019;64

Ross, Endersby-Harshman, & Hoffmann, 2019), which can lead to unequal rep-65

resentation due to variation in extraction efficiency and/or non-equimolar con-66

centrations of DNA between batches. Nonetheless, theoretical and empirical67

comparisons of individual-based sequencing and Pool-seq indicate that when an68

equal sequencing effort is employed, Pool-seq allows the analysis of more individ-69

uals which leads to similar or more precise allele frequency estimates (Futschik70

& Schlötterer, 2010; Gautier et al., 2013). Although empirical studies showed71

that individual-based sequencing provides more information to detect fine-scale72

population substructure (e.g., hybrids and migrants) than Pool-seq, both ap-73

proaches are suitable for inferring population genetic structure (Chen et al.,74

2022; Dorant et al., 2019). Indeed, when a large number of samples is available,75

Pool-seq data results in more accurate estimates of effective population sizes76

and divergence or admixture time events (Collin et al., 2021). Pool-seq has77

been used in various studies, ranging from population genomic analysis (Begun78
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et al., 2007; Ferretti, Ramos-Onsins, & Pérez-Enciso, 2013; Rubin et al., 2012)79

to experimental evolution (Parts et al., 2011; Turner, Stewart, Fields, Rice, &80

Tarone, 2011; Zhou et al., 2011) and human genetics applications to uncover81

disease-related mutations (Calvo et al., 2010; Lieberman et al., 2014; Prescott82

et al., 2015). Yet, using Pool-seq to perform demographic history inference has83

been hampered by a lack of tools that explicitly model this type of data.84

Recent developments in population genomics using simulations include machine85

learning (Schrider, Shanku, & Kern, 2018; Sheehan & Song, 2016) and model-86

based inference approaches. The latter allows comparing alternative models and87

estimating parameters. Model-based inference methods, such as Approximate88

Bayesian Computation (ABC), offer important advantages (for a review see89

Beaumont et al., 2010 and Hickerson, 2014), because they allow for explicit and90

joint consideration of evolutionary processes and sampling effects. ABC replaces91

data with summary statistics (e.g., heterozygosity, dxy, FST ) and uses simula-92

tions to select models and estimate parameters. The simplest ABC algorithm93

is based on a rejection approach (Tavaré, Balding, Griffiths, & Donnelly, 1997),94

where parameter values (and/or models) sampled from the prior are accepted95

if the distance between the simulated and observed summary statistics is be-96

low a given distance threshold (i.e. tolerance) or rejected otherwise. Accepted97

parameter values provide a sample of independent points from the posterior98

distribution. Given its flexibility, ABC has been widely used in ecology (Pon-99

tarp, Brännström, & Petchey, 2019; Zhang, Dennis, Landers, Bell, & Perry,100

2017), systems biology (Liepe et al., 2014) and population genetics (Cooke &101

Nakagome, 2018; Rougemont & Bernatchez, 2018), with various software im-102

plementations (Boitard, Rodŕıguez, Jay, Mona, & Austerlitz, 2016; Cornuet et103

al., 2014; Huang, Takebayashi, Qi, & Hickerson, 2011; Wegmann, Leuenberger,104

Neuenschwander, & Excoffier, 2010). However, implementing ABC for whole105
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genome data is challenging (Smith & Flaxman, 2020) due to the heavy compu-106

tational burden and difficulty in simulating recombination and mutation rate107

variation along the genome (Jay, Boitard, & Austerlitz, 2019).108

Genomic data from natural populations has led to recent progress in the field of109

speciation, particularly through the study of ecotypes, which represent putative110

initial stages in speciation (Turesson, 1922). Many studies of ecotype evolution111

(Fang, Kemppainen, Momigliano, Feng, & Merilä, 2020; Ravinet et al., 2016;112

Riesch et al., 2017; Van Belleghem et al., 2018) aim to infer if the same phe-113

notypes have evolved in multiple times and locations when facing similar diver-114

gent pressures, i.e. in parallel (Faria et al., 2014; Schluter, 2000). The support115

for natural selection in ecotype formation increases with the number of pop-116

ulation replicates studied, but individual sequencing can become prohibitively117

expensive. Therefore, Pool-seq is useful in studies of parallel adaptation and118

speciation (Morales et al., 2019). Studies of ecotype formation usually consider119

two scenarios (Faria et al., 2014; Johannesson et al., 2010): (i) initial adap-120

tive divergence occurred once with subsequent colonization of analogous pairs121

of environments (single origin scenario); and (ii) colonization of multiple envi-122

ronments was followed by independent evolutionary divergence (parallel origin123

scenario). Lower genetic distance between ecotypes within a locality, inferred124

by principal component analysis or structure plots, is frequently interpreted as125

a signal of parallel evolution. However, ongoing or past gene flow between dif-126

ferent ecotypes can complicate the distinction between these scenarios (Faria et127

al., 2014). Rather, distinguishing between these hypotheses requires an explicit128

contrast of the different scenarios in a model-based framework (Butlin et al.,129

2012, 2014).130

Model-based inference methods are commonly used to test whether divergence131
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occurred with or without gene flow (Klütsch, Manseau, Trim, Polfus, & Wil-132

son, 2016), whether there is ongoing gene flow (Bakovic et al., 2021), as well133

as in finding the most likely population tree for a given set of sampled popula-134

tions (Louis et al., 2014) or estimating relevant demographic parameters (An-135

drew, Kane, Baute, Grassa, & Rieseberg, 2013). However, they have rarely been136

used explicitly to contrast different demographic scenarios of ecotype formation,137

despite some examples using coalescent-based approaches (Hume, Recknagel,138

Bean, Adams, & Mable, 2018) coupled with maximum composite-likelihoods139

(Le Moan, Gagnaire, & Bonhomme, 2016). Even in recognized model systems140

for parallel evolution in natural populations, such as the common rocky-shore141

gastropod, Littorina saxatilis, model-based inference methods have seldom been142

used. This species, found in locations that span the North Atlantic (Reid, 1996),143

is characterised by the existence of two ecotypes in close proximity: one adapted144

to crab predation (hereafter ”Crab” ecotype) and another to heavier wave ex-145

posure (”Wave” ecotype) (Johannesson et al., 2010). Parallel differentiation146

of these ecotypes has been suggested before (Butlin et al., 2014; Panova, Hol-147

lander, & Johannesson, 2006; Rivas et al., 2018; Westram, Panova, Galindo, &148

Butlin, 2016) but only a single study, based on a limited number of markers, has149

contrasted the parallel origin scenario against an explicitly defined alternative150

hypothesis (Butlin et al., 2014). Thus, there is a clear need for efficient and151

easy-to-use methods that could readily distinguish between the two scenarios,152

particularly when that distinction might be complicated by recent gene flow.153

Here we present a new R package to perform model choice and estimate de-154

mographic history parameters tailored to Pool-seq data. The main novelty is155

that we explicitly model and account for known sources of error associated with156

pool-based sequencing. We perform simulation studies to assess whether we can157

leverage pooled sequencing data to infer demographic parameters using ABC158
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under a relatively simple two-population isolation with migration model and to159

differentiate between alternative scenarios of ecotype formation in more com-160

plex models with four populations. Importantly, we consider different migration161

rates among loci to account for the effects of selection against migrants at neu-162

tral markers linked to barriers against gene flow. We illustrate the application163

of our ABC method to Pool-seq whole genome data from L. saxatilis ecotypes,164

inferring whether the origin of the ecotypes consisted of a single or repeated165

parallel events in a narrow geographical area of two locations in Sweden.166

Material and Methods167

We developed an ABC method to model Pool-seq data explicitly under scenar-168

ios with two and four populations. Importantly, in all demographic models, we169

include an explicit parameter representing the error associated with the pool-170

ing process (e.g., unequal individual contribution) and a parameter representing171

errors associated with sequencing (e.g., sequencing and/or mapping errors). Be-172

low, we describe in detail the demographic models considered and the Pool-seq173

parameters in separate sub-sections.174

Isolation with migration model with two populations175

We started by considering a two population isolation with migration model176

with eight parameters (Figure 1A), assuming that an ancestral population of177

size Nref (considered the reference effective size) splits Tdiv generations ago into178

two populations with constant effective population sizes N1 and N2 and with179

constant migration rates m12 and m21. To account for the effects of linked180

selection due to barrier loci (i.e., effect of selection against migrants at neutral181

markers that are possibly linked to barriers against gene flow), we considered182

that a proportion of the genome Pno has no migration (m12 = m21 = 0).183
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Models with four populations: Single vs. parallel ecotype184

formation185

To test the efficiency of our ABC method for distinguishing between different186

ecotype formation scenarios, we considered two alternative models with four187

populations. The four extant populations correspond to two ecotypes found188

at two different locations, i.e., two divergent ecotypes inhabiting each location.189

The four-population model has ten relevant demographic history parameters:190

the population size of the four extant populations (N1 - N4) and of the two191

ancestral populations (NA1 and NA2), the time of the recent (Ts) and ancient192

(TAs) split events in generations, and the two migration rates between the two193

populations (m12 = m34, m21 = m43) inhabiting each location. To estimate194

times of events, we considered as a parameter the time interval between the195

recent and the ancient split (∆s = TAs−Ts). Migration rates between divergent196

ecotypes were assumed to be similar across the two geographic locations (e.g.,197

m12 = m34 - but note that the scaled migration rate 4Nm can be different). A198

proportion of loci (Pno) was also assumed to have no migration between different199

ecotypes. Depending on the topology, the four-population model can represent:200

(i) a single origin scenario, where ecotypes are formed in different locations,201

before dispersing to colonize the two geographic locations (panel B in Figure 1);202

or (ii) a parallel origin scenario, where colonization of each location is followed by203

independent and parallel divergence of the different ecotypes (panel C in Figure204

1). Note that for the four-population models we assumed no migration between205

populations in different locations or between ancestral populations. Thus, the206

single origin model corresponds to a scenario of divergence of ecotypes without207

gene flow (i.e., no migration between ancestral populations), whereas in the208

parallel origin model the divergence of ecotypes occurs within each location209

with gene flow.210
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Coalescent simulations of individual genotypes211

We used coalescent theory to simulate gene trees using scrm (Staab, Zhu, Met-212

zler, & Lunter, 2015), under combinations of parameters and models sampled213

from the priors. Mutations were assumed to occur according to the infinite214

sites model, with a mutation rate µ per site and per generation. For each locus215

(i.e., window) in the genome we simulated gene trees with the same sample size,216

which corresponds to the number of individuals in the pool. In the simulation217

study we simulated pools of 100 diploid individuals (200 haplotypes) from each218

population. Thus, when simulating gene trees we assumed the actual haplo-219

types of all individuals in the pool were known and the effect of pooling was220

simulated at a later step (see next section). To simulate genotypes, we assumed221

that individuals within each population were reproducing at random and hence222

haplotypes were paired at random at each locus to obtain genotypes for each223

biallelic SNP.224

Modelling Pool-seq data and combination of pools225

To model allele frequencies at biallelic SNPs obtained with Pool-seq we follow226

a series of steps (Figure 2). Table 1 summarizes the notations used. Sample al-227

lele frequencies can be computed as the proportion of reads with a given allele.228

Thus, they are influenced by the depth of coverage at each single nucleotide229

polymorphism (SNP), which can vary along the genome due to NGS-associated230

stochasticity. To account for such variation, we considered that the number231

of reads at a given site follows a negative binomial distribution (nBin), previ-232

ously shown to fit empirical distributions (e.g., Malaspinas et al. 2016). More233

precisely, we assumed that, for each SNP, the number of reads Cj for the jth234

populations follows:235
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Cj ∼ nBin(s, ψ) (1)

where s and ψ are defined as:236

s =
mean(Cj)

var(Cj)
(2)

ψ =
mean(Cj)

2

var(Cj)−mean(Cj)
(3)

where mean(Cj) and var(Cj) represent, respectively, the mean and variance of237

the depth of coverage across all SNPs of the jth population. Another source238

of error in pool-based experiments is heterogeneity on the contribution of each239

individual to the DNA pool. PCR amplification step(s) during library prepara-240

tion (e.g., for RAD markers; Baird et al. 2008) can also increase heterogeneity.241

To account for this uneven individual contribution we assumed that, for each242

site, the number of reads from the ith individual (rk,i) of the k
th pool follows a243

multinomial distribution:244

rk,i ∼ mult(Cj , pk,i) (4)

where pk,i represents the expected proportion of reads from individual i in pool245

k, assumed to have a Dirichlet distribution:246

pk,i ∼ Dir

(
ρi
Ij

)
(5)
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where Ij is the number of individuals of the jth population, and ρi reflects247

the Pool-seq error (see below). When DNA extraction is performed for several248

pools of individuals that are combined into a larger pool, uneven contributions249

between pools might occur. To account for this variation, we assumed that the250

number of reads from the kth pool (rk) follows a multinomial distribution251

rk ∼ mult(Cj , pk) (6)

where pk is the expected proportion of reads from that pool, which follows a252

Dirichlet distribution:253

pk ∼ Dir

(
νj,kρk
Ij

)
(7)

where νj,k is the number of individuals in pool k of population j. Thus, our254

approach can be applied to pools with different sizes, ensuring that pools with255

more individuals have a higher contribution to the total number of reads. To256

obtain the number of reads for each individual inside each pool, we replaced257

Cj by rk on equation 4, and Ij by νj,k on equation 5. Following Gautier et258

al. (2013), the unequal contributions of individuals and pools are modelled by259

increasing the variance of the proportion of reads, by adjusting ρ according260

to experimental error parameters ϵi and ϵp, for individuals (pk,i) and pools261

(pk), respectively. The corresponding variances are var(pk,i) =
(
ϵiE[pk,i]

)2
262

and var(pk) =
(
ϵpE[pk]

)2
. The larger the experimental Pool-seq error (i.e. ϵi263

and ϵp), the larger the variance resulting in more unequal contributions from264

individuals. These can be used to derive ρ for individuals and pools (Gautier et265

al., 2013):266

11



ρi =

[
νj,k − 1

ν2j,kvar(pk,i)

]
− 1 =

[
νj,k − 1

ν2j,k
(
ϵiE[pk,i]

)2
]
− 1 (8)

ρk =

[
K − 1

K2var(pk)

]
− 1 =

[
K − 1

K2
(
ϵpE[pk]

)2
]
− 1 (9)

where K is the total number of pools used to sequence the jth population. In267

sum, this model ensures all individuals are expected to contribute the same268

number of reads, with errors due to unequal contribution modelled through the269

dispersion parameters ρi and ρk. When the experimental error rate tends to270

zero, the dispersion parameter tends to infinity, resulting in no pooling error as271

all individuals contribute exactly the same expected number of reads (Gautier272

et al., 2013). Finally, to account for sequencing and mapping errors, we assumed273

that, with an error rate ϵseq, ancestral allele A will be incorrectly called a derived274

allele D or vice-versa. More precisely, given the genotype and the total number275

of reads of the ith individual at a given site, we assumed that the number of276

reads Di with the derived allele follows a binomial distribution:277

Di ∼


Bin(rk,i, ϵseq) if individual is AA (homozygous ancestral)

Bin(rk,i, 1− ϵseq) if individual is DD (homozygous derived)

Bin(rk,i, 0.5) if individual is AD (heterozygote)

(10)

where rk,i represents the total number of reads contributed by a particular in-278

dividual at a given site and ϵseq is the combined effect of both the sequencing279

and mapping errors. We assumed there are only two alleles at each site and280

that each base has an equal probability of being miscalled. Hence for heterozy-281
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gotes each allele originates from either the ancestral or derived allele with equal282

probability (Li et al., 2012).283

ABC implementation using subsets of loci284

To avoid the computational burden of simulating whole genomes, we simulated285

sets of L independent loci with 2000 sites. We assumed that loci were inde-286

pendent, i.e., with free recombination between all pairs of loci (rb = 0.5), and287

that within each locus of 2000 sites there was no recombination (rw = 0.0). Our288

ABC implementation, based on a rejection algorithm, involved several steps: (i)289

sample demographic and pool-seq parameters from prior distributions (Table 2);290

(ii) simulate genotypes for each individual at L loci using coalescent gene trees291

based on demographic history parameters; (iii) simulate the number of reads292

and pooling of individuals for each biallelic SNP, applying filters (e.g., depth of293

coverage and minor allele frequency); (iv) compute summary statistics for ob-294

served and simulated data; (v) calculate Euclidean distance between observed295

and simulated summary statistics, standardizing to ensure that all summary296

statistics have the same mean and variance; (vi) reject parameters with dis-297

tances above a tolerance threshold; (vii) apply a post-processing regression to298

adjust accepted parameter values (Beaumont, Zhang, & Balding, 2002). To299

simulate coalescent gene trees, we assumed all loci within a subset share the300

same demographic history, but set migration rate to zero at a proportion of loci301

Pno to account for selection effects due to barrier loci. For each resulting SNP,302

pool-seq data were simulated (Figure 2) by sampling depth of coverage from303

a negative binomial (equation 1) based on the observed mean and variance of304

the coverage of each population. To mimic common filter steps, we discarded305

SNPs with a depth of coverage outside a given range. For instance, for the L.306

saxatilis data, we kept only sites with a depth of coverage between 50x and 150x307
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(see below). We then simulated each pool’s contribution (equations 6 and 7) to308

the total coverage of a population and each individual’s contribution to their309

pool’s coverage (equations 4 and 5) by randomly sampling values from their re-310

spective distributions. Finally, we randomly drew the number of reads from the311

derived and ancestral alleles for each individual (equation 10), and then applied312

a filter to discard SNPs with fewer than two minor-allele reads. Note that we313

did not consider sequencing errors at invariant sites, as Pool-seq data were only314

simulated for polymorphic sites, and any such errors would be removed by the315

minor-allele frequency filter.316

For each model, at least 5 × 105 simulations of L = 300 loci with b = 2000317

base pairs were conducted. To reduce computational burden, parameter and318

summary statistic tables were saved and reused to analyze different subsets of319

loci from the observed data. To obtain posterior distributions, we combined320

1000 subsets of L = 300 loci randomly selected from the observed data. Each321

subset was processed through steps (v) to (vii) of the ABC algorithm, resulting322

in a sample of independent points from the posterior of each parameter or323

model. We combined the independent posterior samples from the 1000 subsets324

of loci, taking into account the distance between the mean summary statistics325

of each subset and the overall mean across all loci in the genome. This was326

done using the Epanechnikov kernel, which assigns more weight to subsets of327

loci with means closer to the overall mean (supplementary Figure S1). Since328

demographic history is expected to affect all loci similarly across the genome,329

this approach aimed to minimize the impact of outlier subsets of loci on the330

posterior estimates. All steps were performed using custom-made functions and331

scripts in R, adapted from Beaumont et al. (2002).332

14



Relative summary statistics and scaled parameters333

We selected a set of statistics (Table S1) to summarize the patterns of rela-334

tive diversity and differentiation within and among populations (Fräısse et al.,335

2021; Jay et al., 2019), computed only for polymorphic sites across all pop-336

ulations. Namely, we considered: (i) expected heterozygosity per population337

and between all pairs of populations (Nei & Roychoudhury, 1974); (ii) pair-338

wise FST between all pairs of populations (Bhatia, Patterson, Sankararaman, &339

Price, 2013); (iii) proportion of SNPs with fixed differences between populations340

(Fräısse et al., 2021); (iv) proportion of exclusive SNPs within each population341

(Fräısse et al., 2021); and for the four population models (v) several D-statistics342

with different combinations of P1, P2 and P3 populations (adapted from Ma-343

linsky, Matschiner, and Svardal (2021)). To capture the distribution across loci,344

we considered the mean and standard deviation of the above statistics. For345

FST , we further considered the 5% and the 95% quantiles because these should346

capture the effect of barriers to gene flow. In sum, we considered 13 summary347

statistics for the two-population model and 57 for the four-population models348

(Table S1).349

Importantly, all these summary statistics are relative measures of diversity and350

differentiation that depend on relative branch lengths of coalescent trees (e.g.,351

FST ). Hence, we increased the efficiency of simulations by inferring relative352

demographic parameters scaled by the ancestral effective population size Nref .353

We estimated relative effective sizes (e.g., n1 = N1/Nref ), relative times of di-354

vergence (e.g., δs = ∆s/4Nref ), and scaled migration rates (e.g., 4N1m21). To355

clarify, note that all relative parameters are represented with a lower case (e.g.,356

n1), while the absolute parameters are indicated with upper case letters (e.g.,357

N1) and that scaled migration rates specify which population is receiving immi-358

grants by the subscript next to N . Estimation of relative parameters was done359
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by performing coalescent simulations, fixing the ancestral effective population360

size to Nref = 25000 and the mutation rate to µ = 1.5× 10−8 per site, as pre-361

viously used for L. saxatilis (Butlin et al., 2014). To obtain absolute parameter362

estimates, we re-scaled parameters based on a re-scaling factor f = obs[S]/E[S]363

that depends on the observed number of SNPs (obs[S]), and on the expected364

number of SNPs according to parameter estimates of a given model (E[S]). As-365

suming the infinite sites mutation model, the expected number of segregating366

sites was calculated based on the expected total branch length (E[T ]), mutation367

rate per site (µ) and number of sites (L) as E[S] = E[T ]µL (Hudson, 1990).368

To obtain E[T ] we simulated 100,000 gene trees according to parameter esti-369

mates of a given model. The absolute effective population sizes and times of370

events in generations were obtained by multiplying by the rescaling factor f ,371

i.e., Ne = f × ne and Ts = f × ts, respectively.372

Simulation study373

For the two-population model, estimates were based on 106 simulations, whereas374

for the four-population scenarios they were based on 5 × 105 simulations for375

each scenario of ecotype formation. For each simulation, we generated 300376

independent loci with 2000 base pairs, sampling 100 diploid individuals from377

each population. Parameter values were sampled from uniform or log-uniform378

prior distributions summarized in Table 2. The exception was the proportion379

without migration (Pno), which was sampled from a Beta distribution reflecting380

a low proportion of loci without migration a priori. For Pno we truncated381

the distribution, replacing values below 0.01 and above 0.50 by 0.00 and 0.50,382

respectively (Table 2). To evaluate the accuracy of our ABC implementation383

for Pool-Seq data to estimate parameters and model choice, we performed a384

leave-one-out cross-validation (Csilléry, François, & Blum, 2012). Hereafter,385
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we use the term accuracy to indicate how close (or far off) a particular point386

estimate is to the true parameter value. Briefly, a random simulation was picked,387

and its summary statistics were used as pseudo-observed data. The remaining388

simulations were used to infer the parameters of the selected simulation. The389

ABC estimation was repeated for n pseudo-observed datasets. The prediction390

error was computed as:391

ϵpred =
1

n
·
∑n

i=1(Θ̂i −Θi)
2

var(Θ)
(11)

where Θi is the true parameter value of the ith pseudo-observed dataset, Θ̂i is the392

estimated parameter value, and var(Θ) is the variance of the true parameter393

values. For parameter inference, we assessed the prediction error with n =394

5000, considering three different point estimates (mode, median and mean of the395

posterior distribution), at two tolerance values (0.005 or 0.01). For comparison,396

we computed prediction errors using the mean of the prior distribution as point397

estimates. For evaluating the model choice we used n = 1000 pseudo-observed398

datasets. To define the model estimated for each pseudo-observed dataset, we399

considered two posterior probability thresholds: (i) 0.5, assigning a dataset to400

the model with posterior probability larger than 0.5; (ii) 0.9, a more stringent401

criterion assigning a dataset to a model only if the posterior was larger than402

0.9, classifying it as ”unclear” otherwise.403

Effect of explicitly modeling Pool-seq errors404

By assuming that the proportion of reads with a given allele corresponds to the405

allele frequencies, it is possible to analyse Pool-seq data with existing model-406

based methods, e.g., fastsimcoal2 (Excoffier et al., 2021) and DIYABC random407

forest (DIYABC-RF) (Collin et al., 2021). Yet, ignoring Pool-seq associated er-408
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rors due to unequal individual contribution might result in biased demographic409

estimates. To assess whether this is the case, and whether accounting for Pool-410

seq errors improves inference of demographic parameters, we compared esti-411

mates obtained either ignoring or explicitly modelling Pool-seq errors. We sim-412

ulated a pseudo-observed Pool-seq dataset (i.e., with variable depth of coverage413

at each site and unequal individual contribution) according to the parameter414

estimates obtained for L. saxatilis with the two population model (Supplemen-415

tary Table S7). We performed parameter inference using the regression ad-416

justment with priors defined in Table 2 using L = 100 loci, 500k simulations417

and a tolerance of 0.01, either: (i) ignoring Pool-Seq errors by computing sum-418

mary statistics directly from the simulated haplotypes; (ii) explicitly accounting419

for depth of coverage variation, unequal individual contribution and sequenc-420

ing errors by computing summary statistics after simulating Pool-seq data as421

described above.422

Effect of number of loci423

To increase computational efficiency we simulate multiple subsets of loci, rather424

than entire genomes. To assess the impact of this strategy, we conducted 100k425

simulations with 10, 30, 100 or 300 simulated loci per subset using the two pop-426

ulation isolation with migration model and the priors defined in Table 2. We427

then performed a leave-one-out cross-validation, as described above. We com-428

puted the prediction error using the mean of the regression-adjusted posterior429

as a point estimate for n = 5000 pseudo-observed datasets, with a tolerance of430

0.01. To obtain the 95% confidence interval of the prediction error, we used a431

non-parametric bootstrap approach resampling 10k times the n = 5000 point432

estimates and re-calculating the prediction error.433
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Effect of combining multiple subsets of loci to obtain posteriors434

Our method relies on combining posteriors obtained from multiple subsets of435

loci, giving more weight to subsets of loci with summary statistics closer to the436

mean whole-genome values. To evaluate the impact of this strategy we compared437

estimates obtained with the whole-genome with estimates obtained by merging438

the posteriors of random subsets of loci, varying the proportion of the genome439

sampled (10%, 30%, or 50% of the genome). To reduce the computational440

burden, we assumed that the whole-genome consisted of 100 loci. Using the two-441

population isolation with migration model, we generated 100 pseudo-observed442

whole-genomes according to the parameter estimates of L. saxatilis. Using the443

same model and the priors defined in Table 2, we conducted 100k simulations444

with 10, 30, or 50 loci per subset. Then, for each whole-genome, we sampled445

100 subsets corresponding to either 10%, 30%, or 50% of the genome (i.e., 10, 30446

or 50 loci). We performed parameter inference by merging the posteriors of the447

100 subsets and using the regression adjustment with a tolerance of 0.01. These448

estimates were compared to the approach of Boitard et al. (2016), by using449

summary statistics computed from the whole-genome as a target to perform450

parameter inference, but using for inference summary statistics computed from451

a proportion of the genome, either with 10, 30 or 50 loci. We computed the bias452

of the estimates using 1
n ·

∑
(Θ̂i−Θi), where Θ̂i is the estimated mean posterior453

with subsets of loci, and Θi is the mean posterior with 100 loci (mimicking the454

whole genome) for the ith pseudo-observed dataset, while n = 100 is the number455

of simulated pseudo-observed datasets.456

Impact of ignoring within-locus recombination457

Our models assume free recombination between loci (rb = 0.5) but no recom-458

bination within loci (rw = 0.0). We evaluated the effect of this assumption on459
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parameter estimates by comparing the posteriors obtained for pseudo-observed460

datasets with within-locus recombination to those obtained for datasets sim-461

ulated without recombination to assess if ignoring within-locus recombination462

leads to changes in posteriors and thus impacts our estimates. This was done by463

simulating 100 pseudo-observed datasets according to the estimates obtained for464

L. saxatilis (see Supplementary Table S7). Each dataset contained 100 loci with465

within-locus recombination rate equal to the mutation rate (rw = µ). We then466

estimated the parameters using the regression adjustment with 500k simulations467

and a tolerance of 0.01, under our assumption of no within-locus recombination.468

Littorina saxatilis Pool-seq data469

We illustrate the application of our ABC implementation to previously published470

Pool-seq data (Morales et al., 2018) from L. saxatilis populations sampled at471

two different sites in Sweden (Arsklovet and Ramsö). At each of those sites,472

100 females of the Crab and another 100 females of the Wave ecotype were473

sequenced in two separate pools (Morales et al., 2019). DNA extraction was474

performed for batches of five individuals by combining pieces of foot muscle tis-475

sue from five snails in one tube. Reads were trimmed with Trimmomatic v.0.36476

(Bolger, Lohse, & Usadel, 2014) and mapped against the L. saxatilis reference477

genome, produced from a single Crab ecotype individual (Westram et al., 2018),478

using CLC v5.0.3 (www.qiagenbioinformatics.com). Only those reads with a479

mapping score higher than Q20 were retained. Bam files were processed with480

SAMtools v1.3.1 (Danecek et al., 2021), BEDtools v2.25.0 (Quinlan & Hall,481

2010), and Picard tools v2.7.1 (http://broadinstitute.github.io/picard)482

and, for each set of bam files, reads with base quality lower than 30, mapping483

quality lower than 20 and those that mapped to very short contigs (<500 bp)484

were filtered out. We removed sites with a coverage lower than 50x or higher485
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than 150x, ensuring we discarded low-coverage sites that would not contain reads486

for most individuals (i.e. <50x) and sites at putative repetitive or duplicated487

regions leading to unusually high depth of coverage (>150x). Recent studies488

have uncovered an important role of chromosomal inversions in the adaptive489

divergence of L. saxatilis ecotypes (Faria et al., 2019; Koch et al., 2021; Morales490

et al., 2019). Each inversion likely has its unique evolutionary history that may491

be influenced by various demographic and selective processes, such as divergent492

and balancing selection, and may differ from the population history. There-493

fore, to avoid biased estimates, inversion-tailored inference methods would be494

required, accounting for specific features such as varying recombination rates495

between homozygotes and heterozygotes. Since our aim was to infer the demo-496

graphic history, an approach tailored to inversions is outside the scope of this497

study. Thus, we took a conservative approach removing regions that could be498

associated or linked with the reported inversions (Westram, Faria, Johannes-499

son, & Butlin, 2021) (list of kept and removed contigs in Supplementary Data500

File 1). As breakpoints are not yet defined for many inversions, we removed501

3671 contigs within inversions or in buffer regions. This corresponds to 3.3%502

of the whole genome Pool-seq dataset, distributed across the genome but with503

approximately 1/3 of the removed contigs located in chromosomes 10 and 12.504

To maximize the number of SNPs we kept all the remaining contigs, although505

only 20% of them map to known collinear regions (Westram et al., 2018). We506

estimated parameters of the two-population model for the two ecotypes from507

Arsklovet using the prior distributions and 106 simulations used for the simu-508

lation study. Similarly, we performed model choice and estimated parameters509

for the four-population models using 5×105 simulations, estimating parameters510

for the model with the highest posterior probability. Keeping in line with our511

strategy of using subsets of loci, we considered each contig in the L. saxatilis512
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dataset as an independent locus and randomly selected a subset of contigs (i.e.513

L = 300). We then selected a random window of b = 2000 base pairs from514

each contig and computed summary statistics for those windows. To estimate515

parameters we computed the mean posterior (point estimate) and 95% credible516

intervals based on the weighted quantiles. Since this dataset only contained517

SNPs, remaining sites could be monomorphic or missing data. To re-scale the518

parameters, we calculated the number of SNPs per window assuming that the519

remaining sites were monomorphic. We converted time of events in generations520

to years, assuming a generation time of 0.5 years (Butlin et al., 2014).521

Results522

Performance of ABC point estimates523

To evaluate the performance of our ABC implementation we performed a simu-524

lation study, summarizing the posterior distributions with three point estimates525

(mean, median and mode). When using L = 300 loci, prediction errors were526

lower using the mean or median with the regression-based adjustment for all the527

parameters (Tables S2, S3 and S4). As expected, with the regression, tolerance528

had a negligible effect in the prediction error. Additionally, prediction errors529

decreased with increasing number of simulated loci in the subsets, despite a530

clear trend of diminishing returns with more than L = 100 loci (supplementary531

Figure S2). Thus, unless specified, hereafter we summarize results obtained532

with subsets of L = 300 loci, using the regression-based adjustment and the533

mean as a point estimate, with a tolerance of 0.01.534

Although the set of summary statistics was different for the two and four-535

population models, the prediction errors were similar for most parameters (sup-536

plementary Figures S3 and S4). For the relative effective sizes of extant pop-537
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ulations (Figure 1), prediction errors ranged from 0.110 to 0.119 for the two-538

population model (Table 3, panel A in Figure 3), from 0.111 to 0.127 for the539

single origin (Figure 3B), and from 0.121 to 0.140 for the parallel origin (Ta-540

ble 3), indicating that the mean of posteriors provide accurate point estimates.541

For the sizes of ancestral populations in the four-population models (absolute542

values indicated by NA1 and NA2 in Figure 1), prediction errors were higher543

in the single origin than in the parallel origin (Table 3). For both models,544

the relative sizes of ancestral populations, na1 and na2, attained the highest545

prediction errors across all parameters, ranging from 0.530 to 0.616, indicating546

that point estimates are less accurate for ancestral effective sizes. Nevertheless,547

since prediction errors are smaller than the ones obtained when using the mean548

of the prior (close to 1), the shape of the posterior indicates that the summary549

statistics provide information about such parameters. For the relative timing550

of the split events, prediction errors were higher in the two-population model551

(0.34, Table 3, Figure 3D), than in the four-population models (ranging from552

0.036 to 0.182). For the relative time of recent split (ts), prediction errors were553

lower in the single origin model (0.036) than in the parallel model (0.172, Table554

3), whereas for the relative time interval between split events (δs), prediction555

errors were similar for both models (0.182 for single, 0.179 for parallel) (Figure556

3C-F and supplementary Figure S4 B-C, H-I).557

Regarding the migration rates, although we specified prior immigration rates558

mij (probability that a lineage migrates from population i to j forward in time559

per generation), we focus on the average number of immigrants per generation560

(4Njmij , where Nj is the effective size of the population receiving immigrants)561

as it accounts for both migration (proportional to mij) and drift (proportional562

to Nj), with 4Njmij > 1 indicating that migration occurs at a higher rate563

than drift. Prediction errors for 4Njmij were similar for the two and four-564
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population models, ranging from 0.284 to 0.340 (Table 3), although slightly565

higher in the parallel origin model. Across all models, the accuracy of the566

mean of the posterior decreased when the immigration used in simulations was567

too high, with poorer estimates when true 4Njmij >> 10. Overall, prediction568

errors for 4Njmij were higher than for times of split and extant effective sizes,569

indicating that it is harder to accurately infer migration. The proportion of loci570

without migration (Pno) was accurately estimated, as supported by the very571

low prediction errors for the two and four-population models (Table 3).572

Ignoring pooling and sequencing errors resulted in biased estimates for most573

demographic parameters (Figure 4 and supplementary Table S5), when pseudo-574

observed Pool-seq data were analysed without modelling explicitly the joint575

effect of variation in depth of coverage, unequal individual contribution and se-576

quencing errors. Importantly, this is ignored by current demographic inference577

approaches (e.g., DIYABC-RF or fastsimcoal2). In contrast, our ABC approach578

based on explicitly modelling these sources of Pool-seq error provides accurate579

estimates (Figure 4). Although our aim was to demonstrate the implementation580

of an ABC method to perform parameter inference and model selection while581

explicitly modelling Pool-Seq data, treating pooling and sequencing errors as582

nuisance parameters, we report the prediction error for those parameters. The583

accuracy of the inference of the pooling error was similar to that of other param-584

eters, with errors ranging from 0.241 to 0.243 (Table 3). This parameter was585

reasonably well estimated by the posterior mean when simulations were done586

with pooling errors above 150% (Figure 3I and supplementary Figure S3F, S4F-587

L). For the sequencing error, prediction error was higher for the two population588

(0.592) than for the four population models (0.042 - 0.062, Table 3), probably589

because there is more information in models with more individuals.590
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Performance of model choice591

Results of the simulation study indicate that our ABC implementation allows592

a distinction between the single and parallel origin scenarios considered. Out593

of the 1,000 pseudo-observed datasets analysed under each model, using a 50%594

posterior probability threshold, the model was correctly inferred for 975 datasets595

of parallel origin (mean posterior probability of 0.952), and for 937 of single ori-596

gin (mean posterior probability of 0.927, Figure 5A). When the model with the597

highest posterior was incorrect, its posterior probability was substantially lower598

(0.703 when parallel was inferred as single, and 0.755 when single was inferred599

as parallel). Using a more stringent threshold of 90% posterior probability, ABC600

still allowed to disentangle the two scenarios. The number of pseudo-observed601

datasets for which the model was correctly inferred was 877 for the parallel602

origin (one incorrectly assigned to the single model and 122 classified as un-603

clear), and 854 for the single origin (12 incorrectly assigned to parallel and 134604

classified as unclear (Figure 5B).605

Application to L. saxatilis dataset: effect of merging sub-606

sets of loci and recombination607

For simplicity, we discuss results after re-scaling relative parameters to absolute608

effective sizes and time of events in years, using k to indicate thousands (Table609

4 but see Table S7 for the relative estimates). Re-scaling was performed after610

combining the posterior distributions from multiple subsets of loci, giving more611

weight to subsets of loci with mean summary statistics closer to the mean over612

the whole genome. By comparing posteriors obtained by merging subsets with613

varying numbers of loci, we found that using subsets of loci led to posteriors614

similar to those obtained with the whole genome (i.e. 100 simulated loci), but615

with a wider variance, i.e., higher uncertainty. Yet, even with subsets repre-616
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senting only 10% of the genome, posteriors were similar to those obtained using617

all loci, becoming closer as the number of loci in subsets increases (Figure 6,618

Supplementary table S6). Additionally, for all parameters, the bias obtained619

when merging posteriors is similar to, or lower than the bias obtained using620

the summary statistics from all SNPs to estimate parameters simulating just a621

subset of loci (as proposed by Boitard et al. (2016), supplementary table S6).622

Estimates based on the two-population model with Crab and Wave populations623

from Arsklovet indicate (Figure 7 and supplementary Figure S5): (i) a slightly624

larger effective size for Crab (mean ∼18k, 95% CI: 12k - 33k) than Wave (mean625

∼15k, 95% CI: 10K - 28k) which, despite the large overlap of the CIs, is in line626

with previous studies using individual genotypes (a combination of mtDNA, am-627

plified fragment length polymorphism markers and three nuclear genes) (Butlin628

et al., 2014); (ii) a split between Crab and Wave ecotype populations ∼18k years629

ago, but with a wide credible interval (95% CI: 2.2k - 111k); and that (iii) diver-630

gence was accompanied by gene flow, with higher immigration from the Crab631

into Wave ecotype, which is in agreement with reported cline shifts in these632

populations (Westram et al., 2021). Analysis of pseudo-observed datasets simu-633

lated under this scenario suggests that estimates are unlikely to be significantly634

biased by assuming no within-locus recombination (rw = 0) since we obtained635

identical posterior distributions for pseudo-observed datasets simulated without636

(rw = 0) or with a within-locus recombination rate equal to the mutation rate637

(rw = µ, supplementary Figure S6).638

Our analysis of Crab and Wave ecotypes from two locations in Sweden (Ar-639

sklovet and Ramsö) supports the single origin model with strong posterior prob-640

abilities of 0.967 using the rejection algorithm and 1.000 using logistic regression.641

Our parameter estimates under the single origin model (Table 4 and supplemen-642

tary Figure S7) suggest that the two ecotypes diverged approximately 15,000643
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years ago (95% CI: 5000 to 43000 years), followed by a recent colonization of644

both locations by populations from both ecotypes about ∼500 years ago (95%645

CI: 300 to 800 years). Under the single origin model, we estimated high and646

similar immigration rates between ecotypes in Arsklovet and lower migration647

from Wave into Crab in Ramsö (Figure 7H,I and Table S7). The point esti-648

mates supported larger ancestral effective sizes for the Crab population (mean649

40k, 95% CI: 9K - 53k) than the Wave population (mean 21k, 95% CI: 4K -650

48k), but the posteriors were wide and overlapping, indicating high uncertainty651

(Figure 7C). Nevertheless, the joint posteriors of present-day and ancestral pop-652

ulations indicate a population decline for the Crab ecotype in both locations,653

and for the Wave ecotype at Arsklovet. Finally, we inferred a proportion of loci654

without migration Pno close to zero, with a mean of approximately 1% and an655

upper CI close to 6% (Table S7).656

Discussion657

We developed a model-based method to analyse pooled-sequencing data, explic-658

itly modeling various sources of error (e.g., variation in depth of coverage, un-659

equal individual contribution, merging multiple pools) by extending the frame-660

work of Gautier et al. (2013) into an ABC inference framework. We imple-661

mented this into a freely available R package, allowing users to perform model662

choice and parameter inference of demographic history based on Pool-seq data663

from natural populations. Our approach is based on simulating subsets of loci,664

estimating relative parameters and using relative summary statistics. These in-665

cluded summary statistics that are widely used in ABC, such as the mean and666

standard deviation of expected heterozygosity per population and between all667

pairs of populations (Jay et al., 2019), relative genetic differentiation between668

population pairs (FST ), and others that capture parts of the joint site frequency669
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spectrum (Wakeley & Hey, 1997), such as the proportion of SNPs with fixed670

difference between populations (Fräısse et al., 2021). To increase computational671

efficiency we fixed the ancestral effective population size (Nref ) and inferred rel-672

ative demographic parameters, which were converted to absolute values based673

on an average mutation rate and number of observed SNPs. This circumvented674

the simulation of combinations of parameters leading to similar diversity and675

differentiation values, e.g., identical θ = 4Neµ and hence identical summary676

statistics due to low Ne with high µ or high Ne with low µ. Moreover, by677

combining multiple posterior distributions, obtained from different subsets of678

independent loci, and weighting them according to the distance to the genome-679

wide mean summary statistics, we minimized the impact of non-neutral pro-680

cesses (e.g., background selection) in the inference of demographic history. Our681

simulation study shows that, for the datasets analyzed here, the means of the682

posterior distributions provide accurate point estimates for most demographic683

history parameters of the two- and four-population models. In fact, the predic-684

tion errors for most parameters were similar for both models (Table 3), with685

the exception of migration rates, for which we found higher prediction errors for686

the parallel origin model (Table 3). This can be explained by the recent diver-687

gence of ecotypes with gene flow in each location, implying that it is harder to688

disentangle gene flow from incomplete lineage sorting under the parallel origin689

model. Importantly, our prediction errors based on Pool-seq were within the690

range of those of recent ABC methods based on individual genotypes (Fräısse691

et al., 2021). Although the aim was to infer demographic history accounting692

for the effects of barrier loci, results indicate that the proportion of loci with-693

out migration (Pno) was well estimated in the two- and four-population models,694

suggesting it is possible to estimate the number of barrier loci under selection.695

Additionally, and despite concerns about model choice and estimation of Bayes696
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factors with ABC (Marin, Pillai, Robert, & Rousseau, 2014; Robert, Cornuet,697

Marin, & Pillai, 2011), our model choice results indicate that Pool-seq provides698

enough information to distinguish between scenarios of ecotype formation with699

high posterior probabilities (proportion of correctly assigned simulations with700

90% posterior probability above 0.85 for both models, Figure 5). This is ex-701

plained by the fact that the single and parallel origin models considered have702

different mean values for several summary statistics (supplementary Figure S8),703

which is required to distinguish models in an ABC framework (Marin et al.,704

2014), and was expected given that gene flow occurs between populations with705

different shared ancestries in the alternative models (Figure 1). Importantly,706

our R package includes functions to compute prediction errors, allowing users707

to perform simulation studies based on their specific set of models, prior dis-708

tributions, sample sizes, depths of coverage and numbers of pools. Thus, users709

can evaluate the accuracy of ABC results for their specific datasets and models.710

Also, the R package includes functions to assess the fit of the models to the711

data, visually plotting the fit of simulations to the observed summary statistics.712

Below we discuss the application to L. saxatilis ecotypes, as well as limitations713

and future perspectives.714

Recent single origin of Littorina saxatilis ecotypes in Swe-715

den716

To illustrate the application of our method to Pool-Seq data, we analysed data717

from pools of L. saxatilis ecotypes, exploring the effects of obtaining posteriors718

by merging subsets of loci and assumptions about within-locus recombination.719

Using subsets of 300 loci, we found evidence supporting a single origin of Crab720

and Wave ecotypes in Sweden. Our results indicate that the ecotypes diverged721

relatively recently, followed by a split of the populations in different locations722
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about 1,000 generations ago (approximately 500 years ago), with high gene flow723

between ecotypes. This is consistent with a recent postglacial colonization of724

Swedish islands (Panova et al., 2011). The estimates from both the two- and725

four-population models were consistent, with the divergence time for Crab and726

Wave ecotypes being approximately 15,000 years ago. Both models also indicate727

high migration rates between ecotypes (4Nm > 10), with slightly higher rates728

from Crab to Wave ecotypes (Figure 7G-I). This supports the hypothesis of729

a higher net dispersal from Crab to Wave, which may explain the observed730

shift in cline centres towards the wave habitat on Swedish islands (Westram et731

al., 2021). We found slightly larger effective sizes for Crab than Wave ecotype732

populations, together with lower effective sizes for present-day than ancestral733

populations, in agreement with a previously reported lack of support for past734

expansions based on individual genotypes (Butlin et al., 2014). Despite the735

high uncertainty in the posteriors for ancestral population sizes, our estimates736

suggest a higher density of individuals in Crab than Wave habitats, which is737

also consistent with the reported shifts in cline centres (Westram et al., 2021).738

Finally, we found that a low proportion of the genome was linked to complete739

barriers to gene flow between the two ecotypes (Pno < 6%). This low proportion740

of barrier loci was not surprising since we excluded SNPs from all known regions741

associated with chromosomal inversions in L. saxatilis, which play an important742

role in the non-neutral ecotype divergence process (Westram et al., 2021). Thus,743

a possible explanation for our estimates is that barrier loci also occur outside744

inversions. However, given the lack of a chromosome level reference genome745

with a clear mapping of collinear and inverted regions, we cannot exclude that746

some of the SNPs included in our analysis are actually linked with chromosomal747

inversions.748

The inferred high gene flow (4Nm > 10) between Wave and Crab populations749
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may limit our ability to distinguish between alternative models (Bierne, Gag-750

naire, & David, 2013), but our results and ABC model choice based on individ-751

ual genotypes (Butlin et al., 2014) both support a single origin for L. saxatilis752

ecotypes in Sweden. Indeed, simulations under the single origin model fit the753

observed summary statistics (supplementary Figure S9), but caution is needed754

due to the simplified nature of our models. Due to the limited spatial scale755

of our study, our results may reflect recent postglacial colonization of the two756

locations, rather than ecotype formation. Indeed, it is probable that ecotype757

formation in these Swedish locations predates their colonization. To determine if758

ecotype formation occurred in parallel, the ABC approach developed here could759

be applied to compare Wave and Crab ecotypes from more distant locations.760

Limitations and future perspectives761

Our aim was to implement an ABC method using Pool-seq data and test its762

performance under generic two- and four-population divergence models. These763

models are relatively simple, and probably fail to capture the complexity of764

ecotype formation in these geographically restricted L. saxatilis Crab and Wave765

ecotypes. For instance, we assumed a simultaneous divergence of the four ex-766

tant populations, and no migration between ancestral populations, which is un-767

likely to hold. More complex models, implying different strengths of selection768

at barrier loci or the possibility of one ecotype acting as a reservoir of stand-769

ing genetic variation (Jones et al., 2012; Liu, Ferchaud, Grønkjær, Nygaard,770

& Hansen, 2018) could also be considered. It remains to be tested whether an771

ABC framework allows distinguishing between more complex models with Pool-772

seq data. Nonetheless, a recent study has highlighted the potential of Pool-seq773

data to infer demographic histories by combining ABC with supervised machine774

learning in the DIYABC-RF software (Collin et al., 2021). Similarly to our775
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approach, DIYABC-RF enables the simulation and analysis of Pool-seq data776

by first simulating individual SNP genotypes and then using the correspond-777

ing allele frequencies to generate pool read counts from a binomial distribution.778

However, DIYABC-RF does not explicitly model all possible sources of Pool-seq779

errors, as it only models variation in read coverage across SNPs (by randomly780

drawing coverages from the vectors of SNP coverages in the observed data set).781

Here, we explicitly model the different sources of errors with specific error pa-782

rameters, such as variation in depth of coverage, unequal individual and pool783

contributions, and sequencing errors. Our results show that ignoring Pool-Seq784

errors might lead to incorrect estimates, but that demographic parameters are785

estimated accurately by explicitly modeling Pool-Seq errors (Figure 4). The786

low prediction errors found in our simulation study in models with up to four787

populations indicate that Pool-seq data might be suitable to infer demographic788

history under more complex models.789

Our modular approach allows users to integrate our R package seamlessly with790

other packages at different steps. First, here we used the coalescent simulator791

implemented in the R package scrm, but it is possible to consider other demo-792

graphic scenarios and simulate genetic data with coalescent-based methods for793

recombining chromosomes (Kelleher, Etheridge, & McVean, 2016), or forward794

simulators that explicitly model positive and background selection (Haller &795

Messer, 2019) and then use our functions to simulate Pool-seq data. Second,796

after simulating Pool-seq data, users can feed the reference tables with param-797

eters and summary statistics to other tools using more sophisticate algorithms,798

such as neural networks or random forest ABC. Third, after the ABC rejection799

step, users can perform post-processing adjustment using other tools (e.g., abc800

R package, Csilléry et al. 2012). Despite some limitations, our results show that801

combining Pool-seq with ABC is an effective approach for investigating parallel802
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evolution in taxa where similar ecotypes are found at multiple locations. We803

illustrated this by applying our method to Swedish populations of L. saxatilis804

ecotypes. The demographic history models considered provide suitable null805

models for a better comprehension of the genetic basis of divergent adaptation806

across many taxa.807
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Westram, A. M., Rafajlović, M., Chaube, P., Faria, R., Larsson, T., Panova, M.,1124

. . . Butlin, R. K. (2018). Clines on the seashore: The genomic architecture1125

underlying rapid divergence in the face of gene flow. Evolution letters,1126

2 (4), 297-309. doi: 10.1002/evl3.741127

Zhang, J., Dennis, T. E., Landers, T. J., Bell, E., & Perry, G. L. (2017). Linking1128

individual-based and statistical inferential models in movement ecology:1129

A case study with black petrels (procellaria parkinsoni). Ecological Mod-1130

elling , 360 , 425-436. doi: 10.1016/j.ecolmodel.2017.07.0171131

Zhou, D., Udpa, N., Gersten, M., Visk, D. W., Bashir, A., Xue, J., . . . Had-1132

dad, G. G. (2011). Experimental selection of hypoxia-tolerant drosophila1133

melanogaster. Proceedings of the National Academy of Sciences, 108 (6),1134

2349-2354. doi: 10.1073/pnas.10106431081135

42



Data Accessibility Statement1136

All custom scripts used to perform the simulations and Approximate Bayesian1137

Analysis can be found in the GitHub repository: https://github.com/joao1138

-mcarvalho/poolABC. These scripts will be made available as an R package on1139

the CRAN repository upon publication. Genomic data from Littorina saxatilis1140

populations was previously processed in Morales et al. (2019). All the custom1141

scripts used by the authors can be found in the GitHub repository: https://1142

github.com/hmoral/Ls pool seq. Raw sequencing reads were deposited in the1143

Sequence Read Archive under the BioProject PRJNA494650. Additional data1144

related to this paper may be requested from the authors.1145

Author Contributions1146

JC and VCS developed the theoretical formalism, performed the analytic calcu-1147

lations, and planned the study. JC developed and implemented the R package,1148

and performed the simulation study to validate the inference method. HM pro-1149

cessed the observed genomic data. JC and VCS analyzed the data. JC wrote1150

the manuscript together with VCS, with support from RF and RKB. RF, RKB1151

and VCS supervised the project. All authors provided critical feedback and1152

helped shape the analysis and manuscript.1153

43

https://github.com/joao-mcarvalho/poolABC
https://github.com/joao-mcarvalho/poolABC
https://github.com/joao-mcarvalho/poolABC
https://github.com/hmoral/Ls_pool_seq
https://github.com/hmoral/Ls_pool_seq
https://github.com/hmoral/Ls_pool_seq


Table 1: Summary of main notations used. Note that when we refer to
individuals throughout this table, we are referring to diploid individuals.

Notation Parameter definition

l Total number of populations in the pooling experiment

Cj Total number of reads of the jth population (total coverage)

K Total number of pools used to sequence the jth population

νj,k Total number of individuals sequenced in the kth pool of the jth population

Ij =
K∑

k=1

νj,k Total number of individuals of population j

I =
l∑

j=1

K∑
k=1

νj,k Total number of individuals in the pooling experiment

E[pk] Expected value of the contribution of the kth pool

E[pk,i] Expected value of the contribution of ith individual of the kth pool

ρ Pool-seq error, proportional to dispersion of individual (or pool) contribution around their expected value

pk Contribution (proportion) of reads from the kth pool

(
K∑

k=1

pk = 1

)
pk,i

Contribution (proportion) of reads from the ith individual of the

kth pool of population j

(νj,k∑
i=1

pk,i = 1

)

rk

Number of reads from the kth pool

(
rk =

νj,k∑
i=1

rk,i

)
of population j (pool coverage).

Note that Cj =
K∑

k=1

rk =
K∑

k=1

νj,k∑
i=1

rk,i

rk,i Number of reads from the ith individual of the kth pool of a given population

Di Number of derived allele reads of the ith individual
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Table 2: Prior distributions and their ranges for each parameter.
Parameters are presented for the four-population models and, when relevant,
for the two-population model. ni - relative sizes of the extant populations
(n1, n2, n3, n4); nai - relative sizes of the ancestral populations (na1, na2); tdiv -
relative time of the split event in the two-population model, ts - relative time of
the recent split event; δs - relative time interval between ts and the ancient split
event (tAs); ϵpool - experimental error introduced by the pooling procedures;
ϵseq - error associated with sequencing and mapping errors; mij - probability
per generation that an individual migrates from the N1 or N3 (Crab) popula-
tion to the N2 or N4 (Wave) population (forward in time), mji - probability per
generation that an individual migrates from the N2 or N4 (Wave) population
to the N1 or N3 (Crab) population (forward in time) and Pno - proportion of
the simulated loci where no migration occurs between ecotypes.

Two-population model Four-population models

parameter minimum maximum minimum maximum

ni 0.1 3 0.1 3

nai - - 0.1 3

tdiv 0 3 - -

ts - - 0 3

δs - - 0 3

ϵpool 5 250 5 250

ϵseq 0.0001 0.001 0.0001 0.001

mij 10−13 10−3 10−13 10−3

mji 10−13 10−3 10−13 10−3

Pno 0 0.5 0 0.5
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Table 3: Prediction errors for parameter estimation. Prediction errors
were computed using the mean of the posterior distribution, obtained after the
regression adjustment and a tolerance of 0.01. Prior mean indicates the predic-
tion error if the mean of the prior distribution were used as point estimates. n1
to n4 - relative population sizes of the extant populations; na1 and na2 - relative
population sizes of the ancestral populations; tdiv - relative time of the split
event in the two-population model; ts - relative time of the split event that lead
to the origin of the current populations; δs - relative time interval between ts
and the ancient split event (tAs); ϵpool - experimental error introduced by the
pooling procedures; ϵseq - error associated with sequencing and mapping errors;
m12,m34 - probability per generation that an individual migrates from the N1

or N3 (Crab) population to the N2 or N4 (Wave) population (forward in time),
m21,m43 - probability per generation that an individual migrates from the N2

or N4 (Wave) population to the N1 or N3 (Crab) population (forward in time);
4N2m12 and 4N1m21 - average number of immigrants per generation (4Nm)
from N1 to N2 and from N2 to N1 (respectively) at the first site; 4N4m34 and
4N3m43 - equivalent immigration rates at the second site and Pno - proportion
of the simulated loci where no migration occurs between ecotypes.

parameter prior mean two-population single origin parallel origin

n1 0.997 0.119 0.111 0.128
n2 0.998 0.110 0.113 0.121
n3 0.997 – 0.121 0.140
n4 0.999 – 0.127 0.129
na1 0.998 – 0.596 0.530
na2 1.000 – 0.616 0.549
tdiv 1.000 0.342 – –
ts 1.000 – 0.036 0.172
δs 1.001 – 0.182 0.179
ϵpool 1.000 0.242 0.243 0.241
ϵseq 1.001 0.592 0.062 0.042
m12,m34 1.000 0.401 0.396 0.448
m21,m43 1.001 0.448 0.399 0.439
4N2m12 0.999 0.284 0.325 0.311
4N1m21 0.998 0.293 0.287 0.329
4N4m34 0.996 – 0.298 0.319
4N3m43 1.000 – 0.298 0.340
Pno 1.000 0.072 0.041 0.124
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Table 4: Absolute parameter estimates for Littorina saxatilis popula-
tions. Results are shown for the Arsklovet population for the two-population
model and for Arsklovet and Ramsö for the single origin model. For this model
N1 and N2 correspond, respectively, to the absolute size of the Arsklovet Crab
and Wave populations, while N3 and N4 correspond to the absolute size of the
Ramsö Crab and Wave populations, respectively. For each parameter, the value
outside brackets corresponds to the re-scaled mean of the posterior distribution
and in-between brackets is the 95% credible interval. Tdiv, Ts and ∆s are pre-
sented in years. Parameters indicated here are the same as in table 3, except
for Pno, which is converted to the percentage of the genome where no migration
occurs between ecotypes.

parameter two-population single origin

N1 18489 (12106 - 32956) 10336 (4617 - 34148)

N2 15793 (10167 - 27613) 5486 (2936 - 18424)

N3 – 12648 (5488 - 35603)

N4 – 15309 (6245 - 41201)

NA1 – 40854 (8516 - 53242)

NA2 – 21118 (3866 - 47367)

Tdiv 18211 (2210 - 111264) –

Ts – 521 (316 - 818)

∆s – 14308 (4790 - 42954)

4N2m12 22.8 (5.9 - 60.8) 30.6 (10.3 - 105.1)

4N1m21 16.3 (2.3 - 52.6) 32.1 (10.1 - 108.0)

4N4m34 – 34.3 (11.0 - 117.2)

4N3m43 – 19.9 (6.3 - 71.4)

Pno 1.2 (0.1 - 6.6) 1.3 (0.2 - 5.4)
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Figure 1: Demographic models for the isolation with migration scenario with
two populations (A), single (B) and parallel (C) ecotype formation. Dark shad-
ing indicates one of the ecotypes, light shading the other ecotype. Parameters
used were: Nref - effective size of the ancestral population, NA1 and NA2 -
size of the two ancestral populations, N1 - N4 - sizes of the present-day pop-
ulations, Tdiv - time of separation of the ecotype populations (in generations),
Ts - time of the recent split event (in generations), TAs - time of the ancient
split event (in generations), ∆s - time interval between the two split events (in
generations), m12 - probability per generation that an individual migrates from
N1 to N2 (forward in time), which corresponds to the probability that lineages
move from N2 to N1 backwards in time, m21 - probability per generation that
an individual migrates from N2 to N1 (forward in time), which corresponds to
the probability that lineages move from N1 to N2 backwards in time, m34 -
probability per generation that an individual migrates from N3 to N4 (forward
in time), which corresponds to the probability that lineages move from N4 to
N3 backwards in time and m43 - probability per generation that an individual
migrates from N4 to N3 (forward in time), which corresponds to the probability
that lineages move from N3 to N4 backwards in time.
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Figure 2: Schematics of the steps needed to simulated Pool-seq data. Dark
colored boxes denote steps related with probabilities of contribution and circles
represent necessary inputs for the corresponding step. Important formulas for
each step are included inside the relevant box.
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Figure 3: Results of the cross-validation for parameter estimation. The y-
axis displays the estimated values, plotted against the true parameter values
on the x-axis. Estimates correspond to the mean of the posterior obtained
with a tolerance rate of 0.01. Parameters shown here are: A - relative size of
a present-day population (n1) of the two-population model; B - relative size
of a present-day population (n1) of the single origin model; C - time interval
between the two split events (δs); D to F - time of the split event (tdiv) for the
two-population model and time of the recent split (ts) for the single origin model
and the parallel origin model (respectively); G - average number of immigrants
per generation in log10 scale (4Nm); H - proportion of the genome without
migration between different populations (Pno) and I - pooling error.
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Figure 4: Impact of ignoring Pool-seq errors on demographic parameter esti-
mates. Posterior obtained for a pseudo-observed Pool-seq dataset using either
our ABC approach that explicitly accounts for Pool-seq errors (blue), or ig-
noring Pool-seq errors by using directly simulated allele frequencies (red). The
parameters shown here are: A - relative size of a present-day population (n1), B
- relative time of separation of the ecotype populations (tdiv), C - average num-
ber of immigrants per generation (4Nm12) and D - proportion of the genome
without migration (Pno). The black line represents the true parameter value
used to simulate the pseudo-observed dataset with L = 100 loci.
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Figure 5: Model misclassification for the four-population models. Confusion
matrix assuming that a simulation is assigned to a given model when the poste-
rior probability is above 0.5 (A) or assuming that a simulation is only assigned
to a model when the posterior probability is above 0.9 (B).

52



Figure 6: Impact of merging posteriors. We generated a pseudo-observed
dataset of 100 loci and inferred parameters using the full dataset or subsets
representing 10%, 30%, or 50% of the genome. The x-axis shows the estimated
parameter value, and the y-axis shows the density of the posterior distribution
obtained with the full dataset and the weighted combination of posteriors from
the subsets. The solid vertical line represents the true parameter value. Param-
eters shown are: A - relative size of a present-day population (n1), B - relative
time of separation of the ecotype populations (tdiv), C - average number of im-
migrants per generation (4Nm12) and D - proportion of the genome without
migration (Pno).
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Figure 7: Posterior distributions of relative L. saxatilis parameters using re-
gression adjustment method and a tolerance of 0.01. Prior distributions are
shown for reference (dotted blue line). First column (A, D, G and J) corre-
sponds to the two-population model, others to the single origin model. A -
relative size of Arsklovet Crab (n1) and Wave populations (n2), B - relative size
of Arsklovet Crab (n1), Arsklovet Wave (n2), Ramsö Crab (n3) and Ramsö Wave
(n4) populations, C - relative size of ancestral populations (na1 and na2), D -
relative time of separation of the ecotype populations (tdiv), E - relative time
of the recent split event (ts), F - relative time interval between the two split
events (δs), G and H - average number of immigrants per generation (4N2mCW

and 4N1mWC) in Arsklovet, I - average number of immigrants per generation
(4N4mCW and 4N3mWC) in Ramsö, J and K - proportion of the genome with-
out migration (Pno) and L - pooling error. The relative parameter values were
converted to absolute values using a re-scaling factor f = obs[S]/E[S], where
obs[S] corresponds to the observed number of SNPs and E[S] is the expected
number of SNPs. Absolute parameter values were obtained by multiplying the
point estimate of the posteriors shown here by the rescaling factor f .
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Supplementary Material1154

Input and output files1155

For the simulation of Pool-seq data, our method relies on custom-made R func-1156

tions that do not require a particular input file but instead require a set of user1157

inputs at each appropriate function. To simulate the total depth of coverage for1158

each population, the user must define the mean and the variance of the depth of1159

coverage for each population, as well as the total number of SNPs to simulate.1160

To simulate pools, the user must also define the pool error to use in the simula-1161

tion (ϵpool). Finally, to obtain the number of reads with the derived allele, Di,1162

the user must also supply a value for the sequencing/mapping error (ϵseq) and1163

the genotypes, ideally obtained using coalescent theory to simulate gene trees.1164

After this step, our method provides a function to translate the number of an-1165

cestral/derived alleles into major/minor alleles, ensuring that the minor allele1166

is the one for which we have fewer reads across all the populations. At this1167

step, the user also has the choice to remove sites with fewer than x minor allele1168

reads, where x is a user-defined threshold. The output of this section of our1169

method are two different matrices, one containing the number of minor allele1170

reads and the other containing the total depth of coverage. Both matrices are1171

in the nPop× nSNP format, meaning that each row contains the information1172

for a given population, while each column is a different site. These matrices1173

can be used to compute allele frequencies and thus, calculate several summary1174

statistics.1175

Our approximate Bayesian computation method is designed to work with the1176

rc files produced by the snp-frequency-diff.pl script from the PoPoolation21177

suite (Kofler, Pandey, & Schlötterer, 2011). This file contains the number of1178

major and minor allele reads for every SNP in a concise format (for more in-1179

formation please see the PoPoolation2 manual: https://sourceforge.net/p/1180

popoolation2/wiki/Manual/). Given the modular nature of our method, it1181

can also accommodate inputs in the form of matrices, where one of the matrices1182

contains the number of minor allele reads and the other contains the total depth1183

of coverage. These matrices should be in the format nPop × nSNP , meaning1184

that each row should contain the information for a given population, while each1185

column is a different site. Note that an additional matrix, of the same dimen-1186

sions, containing SNP position and contig information should also be available.1187

The input files can then be filtered, removing sites with high or low coverage1188

and sites with too few minor allele reads. The threshold for both the coverage1189

filter and the number of minor allele reads are defined by the user. For ABC1190

parameter inference and model selection, summary statistics are computed for1191

several random blocks of windows (selected according to the contig information)1192

and used as the target. The final output of model selection includes the pro-1193

portion of accepted simulations for a model under a rejection algorithm and the1194

posterior model probabilities of each model after a local linear regression ad-1195

justment. For parameter inference, the output includes the estimates under the1196
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rejection algorithm, the regression adjusted estimates if a local linear regression1197

was performed and the median, mean, mode and 95% confidence interval of the1198

weighted posteriors for each parameter.1199
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Table S1: Set of summary statistics considered. The D-statistics combi-
nations tested if there was more introgression between the divergent ecotypes
at the same location or between the same ecotypes at different locations: for
D-statistic 1, P1 was the Wave population in the first location (N2), P2 was the
Wave population in the second location (N4) and P3 was the Crab population
at the first location (N1); for D-statistic 2, P1 was again the Wave population
in the first location (N2) but P2 was the Crab population in the second location
(N3) and P3 was the Crab population at the first location (N1); for D-statistic
3, P1 was also the Wave population at the first location (N2), P2 was the Crab
population at the first location (N1) and P3 was the Wave population at the
second location (N4). For all combinations, P4 was assumed to be an outgroup
fixed, at all sites, for the major allele. Note that for the four-population models
we only considered the proportion of SNPs with fixed differences between the
two populations that inhabit the same location. For the proportion of exclusive
SNPs, we also computed this per location i.e. checking if each site was segre-
gating in one population but not in the other population inhabiting the same
location, but we also computed the proportion of sites that were segregating in
only one population and not in the other three.

summary statistic two-population four-populations

mean heterozygosity [1] 2 values (1 per population) 4 values (1 per population)
SD heterozygosity [1] 2 values (1 per population) 4 values (1 per population)
mean heterozygosity between populations [1] 1 pairwise value 6 pairwise values
SD heterozygosity between populations [1] 1 pairwise value 6 pairwise values
pairwise FST [2] 1 pairwise value 6 pairwise values
SD FST [2] 1 pairwise value 6 pairwise values
5%FST [2] 1 pairwise value 6 pairwise values
95%FST [2] 1 pairwise value 6 pairwise values
proportion of fixed differences [3] 1 pairwise value 2 values
proportion of exclusive SNPs [3] 2 values (1 per population) 5 values
mean D-statistic 1 [4] – 1 value
mean D-statistic 2 [4] – 1 value
mean D-statistic 3 [4] – 1 value
SD D-statistic 1 [4] – 1 value
SD D-statistic 2 [4] – 1 value
SD D-statistic 3 [4] – 1 value
total 13 57

[1] - Nei and Roychoudhury (1974); [2] - Bhatia et al. (2013); [3] - Fräısse et al.
(2021); [4] - Adapted from Malinsky et al. (2021) assuming that the outgroup

was fixed for an allele different from P3, using nABBA =
∑L

i=1(pi1(1−pi2)(1−
pi3))+((1−pi1)pi2pi3), nBABA =

∑L
i=1((1−pi1)pi2(1−pi3))+(pi1(1−pi2)pi3),

where pij denotes the minor-allele frequency at site i for population j.
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Table S2: Prediction errors for two-population model parameters. Pa-
rameter inference was performed using a simple rejection or a regression adjust-
ment using a local linear regression. For each method, values are presented for
two different tolerance rates. n1 and n2 - relative population sizes of the extant
populations, tdiv - relative time of separation of the ecotype populations, ϵpool -
experimental error introduced by the pooling procedures, ϵseq - error associated
with sequencing and mapping errors, m12 - probability per generation that an
individual migrates from N1 to N2 (forward in time), m21 - probability per gen-
eration that an individual migrates from N2 to N1 (forward in time), 4N2m12

and 4N1m21 - average number of immigrants per generation (4Nm) from N1 to
N2 and from N2 to N1 (respectively) and Pno - proportion of the simulated loci
where no migration occurs between ecotypes.

REJECTION REGRESSION

tolerance of 0.005 tolerance of 0.01 tolerance of 0.005 tolerance of 0.01

parameter mode median mean mode median mean mode median mean mode median mean

n1 0.312 0.219 0.220 0.349 0.243 0.243 0.113 0.106 0.106 0.127 0.119 0.119

n2 0.310 0.213 0.213 0.356 0.239 0.239 0.118 0.110 0.110 0.120 0.111 0.110

tdiv 1.023 0.564 0.589 1.225 0.607 0.634 0.456 0.340 0.319 0.500 0.367 0.342

ϵpool 0.625 0.414 0.432 0.658 0.461 0.487 0.261 0.239 0.236 0.262 0.242 0.242

ϵseq 2.527 0.966 0.974 2.651 0.974 0.981 0.914 0.613 0.591 0.884 0.611 0.592

m12 1.404 0.648 0.674 1.390 0.651 0.687 0.655 0.436 0.428 0.609 0.402 0.401

m21 1.301 0.627 0.656 1.368 0.668 0.697 0.668 0.432 0.423 0.710 0.462 0.448

4N2m12 0.762 0.501 0.485 0.800 0.528 0.512 0.338 0.287 0.283 0.336 0.286 0.284

4N1m21 0.768 0.486 0.466 0.837 0.555 0.525 0.308 0.262 0.259 0.351 0.297 0.293

Pno 0.323 0.233 0.214 0.327 0.232 0.212 0.117 0.102 0.090 0.089 0.080 0.072
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Table S3: Prediction errors for the single origin parameters. Parame-
ter inference was performed using a simple rejection or a regression adjustment
using a local linear regression. For each method, values are presented for two
different tolerance rates. n1 to n4 - relative population sizes of the extant popu-
lations, na1 and na2 - relative population sizes of the ancestral populations, ts -
relative time of the split event that lead to the origin of the current populations,
δs - relative time interval between ts and the ancient split event (tAs), ϵpool -
experimental error introduced by the pooling procedures, ϵseq - error associated
with sequencing and mapping errors, m12,m34 - probability per generation that
an individual migrates from the N1 or N3 (Crab) population to the N2 or N4

(Wave) population (forward in time), m21,m43 - probability per generation that
an individual migrates from the N2 or N4 (Wave) population to the N1 or N3

(Crab) population (forward in time), 4N2m12 and 4N1m21 - average number of
immigrants per generation (4Nm) from N1 to N2 and from N2 to N1 (respec-
tively) at the first site, 4N4m34 and 4N3m43 - equivalent immigration rates at
the second site and Pno - proportion of the simulated loci where no migration
occurs between ecotypes.

REJECTION REGRESSION

tolerance of 0.005 tolerance of 0.01 tolerance of 0.005 tolerance of 0.01

parameter mode median mean mode median mean mode median mean mode median mean

n1 0.759 0.465 0.417 0.830 0.489 0.447 0.142 0.127 0.122 0.126 0.114 0.111

n2 0.857 0.513 0.451 0.934 0.546 0.490 0.138 0.123 0.119 0.133 0.118 0.113

n3 0.734 0.452 0.409 0.880 0.530 0.474 0.126 0.113 0.110 0.140 0.125 0.121

n4 0.821 0.501 0.448 0.957 0.563 0.495 0.127 0.115 0.112 0.149 0.134 0.127

na1 1.949 1.109 0.954 1.945 1.119 0.963 1.316 0.613 0.583 1.407 0.627 0.596

na2 1.943 1.103 0.955 1.933 1.112 0.963 1.383 0.643 0.615 1.415 0.646 0.616

ts 0.070 0.063 0.067 0.075 0.071 0.078 0.039 0.037 0.036 0.039 0.037 0.036

δs 1.327 0.694 0.734 1.452 0.741 0.778 0.228 0.193 0.185 0.223 0.188 0.182

ϵpool 1.256 0.704 0.767 1.429 0.766 0.822 0.266 0.253 0.236 0.271 0.261 0.243

ϵseq 0.539 0.550 0.629 0.619 0.627 0.703 0.084 0.070 0.062 0.088 0.071 0.062

m12,m34 1.579 0.744 0.794 1.569 0.781 0.827 0.523 0.386 0.379 0.559 0.401 0.396

m21,m43 1.410 0.738 0.790 1.528 0.798 0.842 0.522 0.384 0.377 0.549 0.401 0.399

4N2m12 1.072 0.759 0.659 1.156 0.843 0.720 0.357 0.299 0.276 0.426 0.357 0.325

4N1m21 1.113 0.773 0.657 1.123 0.808 0.709 0.396 0.330 0.299 0.367 0.307 0.287

4N4m34 1.129 0.811 0.696 1.188 0.865 0.731 0.365 0.306 0.280 0.393 0.328 0.298

4N3m43 1.153 0.818 0.687 1.149 0.840 0.727 0.358 0.299 0.274 0.388 0.323 0.298

Pno 0.190 0.135 0.125 0.235 0.162 0.149 0.044 0.042 0.041 0.045 0.043 0.041
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Table S4: Prediction errors for the parallel origin parameters. Parame-
ter inference was performed using a simple rejection or a regression adjustment
using a local linear regression. For each method, values are presented for two
different tolerance rates. n1 to n4 - relative population sizes of the extant popu-
lations, na1 and na2 - relative population sizes of the ancestral populations, ts -
relative time of the split event that lead to the origin of the current populations,
δs - relative time interval between ts and the ancient split event (tAs), ϵpool -
experimental error introduced by the pooling procedures, ϵseq - error associated
with sequencing and mapping errors, m12,m34 - probability per generation that
an individual migrates from the N1 or N3 (Crab) population to the N2 or N4

(Wave) population (forward in time), m21,m43 - probability per generation that
an individual migrates from the N2 or N4 (Wave) population to the N1 or N3

(Crab) population (forward in time), 4N2m12 and 4N1m21 - average number of
immigrants per generation (4Nm) from N1 to N2 and from N2 to N1 (respec-
tively) at the first site, 4N4m34 and 4N3m43 - equivalent immigration rates at
the second site and Pno - proportion of the simulated loci where no migration
occurs between ecotypes.

REJECTION REGRESSION

tolerance of 0.005 tolerance of 0.01 tolerance of 0.005 tolerance of 0.01

parameter mode median mean mode median mean mode median mean mode median mean

n1 0.743 0.437 0.395 0.888 0.512 0.455 0.157 0.138 0.131 0.149 0.134 0.128

n2 0.731 0.444 0.397 0.858 0.497 0.445 0.145 0.128 0.123 0.141 0.126 0.121

n3 0.910 0.525 0.456 0.968 0.563 0.494 0.154 0.136 0.130 0.171 0.149 0.140

n4 0.836 0.480 0.423 0.961 0.553 0.487 0.156 0.137 0.129 0.153 0.135 0.129

na1 1.913 0.899 0.806 1.914 0.942 0.834 1.161 0.562 0.533 1.199 0.560 0.530

na2 1.925 0.923 0.813 1.958 0.962 0.840 1.116 0.547 0.524 1.194 0.582 0.549

ts 0.549 0.360 0.385 0.603 0.389 0.415 0.204 0.171 0.158 0.223 0.189 0.172

δs 0.474 0.334 0.347 0.493 0.353 0.367 0.202 0.176 0.167 0.212 0.188 0.179

ϵpool 1.270 0.710 0.760 1.346 0.753 0.801 0.263 0.245 0.240 0.261 0.244 0.241

ϵseq 0.531 0.471 0.539 0.600 0.542 0.611 0.061 0.051 0.044 0.061 0.049 0.042

m12,m34 1.505 0.767 0.809 1.582 0.803 0.843 0.609 0.454 0.447 0.606 0.447 0.448

m21,m43 1.514 0.781 0.822 1.570 0.800 0.841 0.606 0.450 0.443 0.580 0.438 0.439

4N2m12 1.118 0.772 0.658 1.161 0.799 0.685 0.387 0.331 0.311 0.396 0.333 0.311

4N1m21 1.119 0.764 0.658 1.184 0.827 0.704 0.407 0.345 0.319 0.417 0.353 0.329

4N4m34 1.150 0.789 0.653 1.201 0.860 0.726 0.417 0.345 0.331 0.400 0.340 0.319

4N3m43 1.179 0.834 0.667 1.208 0.870 0.733 0.412 0.350 0.326 0.432 0.367 0.340

Pno 0.484 0.314 0.278 0.579 0.368 0.327 0.129 0.120 0.118 0.134 0.126 0.124
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Table S5: Biases of the estimates obtained when explicitly modeling or
ignoring Pool-seq errors. We simulated pseudo-observed Pool-seq data and
inferred parameters using either a table of summary statistics computed directly
from simulated haplotypes without accounting for Pool-seq errors or a table
of summary statistics computed after simulating Pool-seq data and explicitly
considering depth of coverage variation, unequal individual contribution, and
sequencing errors. We computed the bias of the estimates using 1

n ·
∑

(|Θ̂i−Θi|),
where Θ̂i is the estimated mean posterior, and Θi is the true parameter value
for the ith pseudo-observed dataset, while n = 100 is the number of simulated
pseudo-observed datasets. n1 and n2 - relative population sizes of the present-
day populations, tdiv - relative time of separation of the ecotype populations,
4Nm12 and 4Nm21 - average number of immigrants per generation and Pno -
proportion of the genome without migration.

parameter ignoring Pool-seq data accounting for Pool-seq data

n1 0.605 0.144

n2 0.584 0.192

tdiv 0.939 0.630

4Nm12 0.797 0.187

4Nm21 0.719 0.239

Pno 0.018 0.010
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Table S6: Biases of the estimates obtained with subsets of loci. We
simulated a pseudo-observed dataset of 100 loci and inferred parameters using
the full dataset or subsets representing 10%, 30%, or 50% of the genome. To
compute the bias, we contrasted the mean of the posterior distribution obtained
with subsets of loci with the mean posterior obtained with 100 loci. The bias
was computed a) after weighted combination of posteriors obtained with subsets
representing 10%, 30% or 50% of the genome and b) by using the summary
statistics of the full dataset as the target for parameter inference performed
with 10%, 30% or 50% of the genome. n1 and n2 - relative population sizes
of the present-day populations, tdiv - relative time of separation of the ecotype
populations, 4Nm12 and 4Nm21 - average number of immigrants per generation
and Pno - proportion of the genome without migration.

a) merging posteriors b) whole-genome

parameter 10% 30% 50% 10% 30% 50%

n1 0.136 0.043 0.008 0.256 0.043 0.006

n2 0.186 0.093 0.046 0.209 0.080 0.042

tdiv 0.867 0.521 0.242 0.845 0.426 0.212

4Nm12 4.564 1.584 1.863 13.261 0.730 1.878

4Nm21 5.061 1.479 0.107 25.674 1.052 0.106

Pno 0.009 0.012 0.010 -0.020 0.003 0.006
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Table S7: Estimates for relative parameters of Littorina saxatilis popu-
lations. Results are shown for the Arsklovet population for the two-population
model and for Arsklovet and Ramsö for the single origin and parallel origin mod-
els. For these models n1 and n2 correspond to the Arsklovet Crab and Wave
population respectively, while n3 and n4 correspond to the Ramsö Crab and
Wave population respectively. For each parameter, the value outside brackets
corresponds to the mean of the posterior distribution and in-between brackets
is the 95% credible interval. Parameters here are the same as in table 2.

parameter two-population single origin parallel origin

n1 0.334 (0.219 - 0.596) 0.557 (0.249 - 1.841) 0.315 (0.134 - 0.732)

n2 0.286 (0.184 - 0.499) 0.296 (0.158 - 0.993) 0.754 (0.241 - 1.895)

n3 – 0.682 (0.296 - 1.919) 0.662 (0.208 - 1.718)

n4 – 0.825 (0.337 - 2.221) 0.939 (0.277 - 2.189)

na1 – 2.203 (0.459 - 2.870) 2.641 (1.554 - 2.980)

na2 – 1.139 (0.208 - 2.554) 2.396 (0.873 - 2.963)

tdiv 0.165 (0.020 - 1.517) – –

ts – 0.014 (0.009 - 0.022) 0.007 (0.005 - 0.018)

δs – 0.386 (0.129 - 1.158) 0.029 (0.002 - 0.070)

m12,m34 0.00073 (0.00013 - 0.0009) 0.00048 (0.00012 - 0.00094) 0.00024 (0.00002 - 0.00076)

m21,m43 0.00049 (0.00005 - 0.00096) 0.00058 (0.00016 - 0.00096) 0.00077 (0.00028 - 0.00099)

Pno 0.012 (0.001 - 0.066) 0.013 (0.002 - 0.054) 0.205 (0.015 - 0.428)

ϵpool 182 (67 - 236) 102 (24 - 183) 130 (23 - 222)

ϵseq 0.00100 (0.00098 - 0.00100) 0.00092 (0.00059 - 0.00099) 0.00099 (0.00097 - 0.00100)
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Figure S1: Merging of multiple posterior distributions. This represents an
example of how the posteriors obtained for each set of loci are combined to
obtain a single estimate per parameter. In the top-left plot several posteriors
distributions are shown, one for each set of loci and for a given parameter.
These multiple posteriors are weighted according to the distance between the
summary statistics of the corresponding simulations and the mean across the
genome, giving more weight to sets of loci with a mean closer to the overall
mean. The top-right plot represents an example of this, where the simulations
with values closer to the global value (represented by the black line) will have
more weight. Using these weights, the multiple posteriors are combined to
obtain a single estimate per parameter, as shown in the bottom-left panel.
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Figure S2: Impact of number of loci on the prediction error. A leave-one-out
cross-validation simulation study with varying numbers of loci per subset was
performed to compute the prediction error for several demographic parameters.
The prediction error is shown on the y-axis. The x-axis shows the numbers of loci
per subset. Points represent the mean prediction error after bootstrapping and
error bars represent 95% confidence intervals. Parameters shown here are: A -
relative size of a present-day population (n1), B - relative time of separation of
the ecotype populations (tdiv), C - average number of immigrants per generation
(4Nm12) and D - proportion of the genome without migration (Pno).
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Figure S3: Results of the cross-validation for parameter estimation using the
two-population model. The y-axis displays the estimated values, plotted against
the true parameter values on the x-axis. Estimates correspond to the mean of
the posterior obtained with a tolerance rate of 0.01. Parameters shown here are:
A - relative size of a present-day population (n1), B - relative time of separation
of the ecotype populations (tdiv), C and D - average number of immigrants per
generation (4NmCW and 4NmWC , respectively), E - proportion of the genome
without migration between different populations (Pno) and F - pooling error

66



Figure S4: Results of the cross-validation for parameter estimation using the
four-population models. Panels from A to F show the results for the single origin
model, while panels G to L show the results for the parallel origin model. The
y-axis displays the estimated values, plotted against the true parameter values
on the x-axis. Estimates correspond to the mean of the posterior obtained with
a tolerance rate of 0.01. Parameters shown here are: A and G - relative size of
a present-day population (n1), B and H - relative time of the recent split event
(ts), C and I - relative time interval between the two split events (δs), D and J -
average number of immigrants per generation (4Nm), E and K - proportion of
the genome without migration between different populations (Pno) and F and
L - pooling error
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Figure S5: Posterior distribution of relative L. saxatilis parameters using the
two-population model. The posterior distributions were obtained with the re-
gression adjustment method and using a tolerance rate of 0.01. For reference, the
prior distribution of each parameter is shown (dotted line). Parameters shown
here are: A - relative size of the Arsklovet Crab population (n1), B - relative
size of the Arsklovet Wave population (n2), C - relative time of separation of the
ecotype populations (tdiv), D and E - average number of immigrants per gener-
ation (4NmCW and 4NmWC , respectively) and F - proportion of the genome
without migration between different populations (Pno). The relative parameter
values presented here were converted to absolute values using a re-scaling factor
f = obs[S]/E[S], where obs[S] corresponds to the observed number of SNPs and
E[S] is the expected number of SNPs. Absolute parameter values were obtained
by multiplying the point estimate of the posteriors shown here by the rescaling
factor f .

68



Figure S6: Impact of within-locus recombination on parameter estimates.
We used simulations that excluded within-locus recombination to estimate the
parameters of two pseudo-observed datasets: one with and another without
within-locus recombination. The x-axis shows the estimated parameter value,
and the y-axis shows the density of the posterior distribution. The posterior
obtained for the pseudo-observed dataset without within-locus recombination
is shown in red and the posterior for the pseudo-observed dataset with within-
locus recombination in blue. The solid vertical line represents the true parameter
value. Parameters shown here are: A - relative size of a present-day population
(n1), B - relative time of separation of the ecotype populations (tdiv), C - average
number of immigrants per generation (4Nm12) and D - proportion of the genome
without migration (Pno).
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Figure S7: Posterior distribution of relative L. saxatilis parameters using
the single origin model. The posterior distributions were obtained with the
regression adjustment method and using a tolerance rate of 0.01. For reference,
the prior distribution of each parameter is shown (dotted line). Parameters
shown here are: A - relative size of the Arsklovet Crab population (n1), B -
relative time of the recent split event (ts), C - relative time interval between the
two split events (δs), D and E - average number of immigrants per generation
(4Nm) from Crab to Wave and fromWave to Crab (respectively) at Arsklovet, F
and G - average number of immigrants per generation (4Nm) from Crab to Wave
and from Wave to Crab (respectively) at Ramsö, H - proportion of the genome
without migration between different populations (Pno) and I - pooling error. The
relative parameter values presented here were converted to absolute values using
a re-scaling factor f = obs[S]/E[S], where obs[S] corresponds to the observed
number of SNPs and E[S] is the expected number of SNPs. Absolute parameter
values were obtained by multiplying the point estimate of the posteriors shown
here by the rescaling factor f .
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Figure S8: Distribution of summary statistics obtained for the single and
parallel origin models. Dark shading indicates the parallel origin model and
light shading the single origin model. Summary statistics are: A - standard
deviation of the expected heterozygosity for a given population, B - standard
deviation of mean pairwise FST , C - 5% quantile of the mean pairwise FST and
D - standard deviation of D-statistic
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Figure S9: Distribution of accepted summary statistics. The black line repre-
sents the target for the parameter inference, the light shading is the distribution
of the complete set of simulated summary statistics and the dark shading is the
distribution of the accepted summary statistics for that particular target. Sum-
mary statistics include examples of all those analyzed here: A - proportion of
exclusive sites, B - mean heterozygosity, C - standard deviation of the mean
heterozygosity, D - mean heterozygosity between a pair of populations, E -
standard deviation of the mean heterozygosity between a pair of populations, F
- mean FST between a pair of populations, G - standard deviation of FST , H -
D-statistic and I - standard deviation of D-statistic.
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