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 41 

Figure S3. The average Peak Signal-to-Noise Ratio (PSNR) of the super-resolution models on 42 
the validation set during training. Our proposed model (MASR) converges faster and better. 43 
 44 
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Figure S4. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on coal test set. The 46 
subplot of Figure 8 in the main article. 47 
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Figure S5. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on sandstone test 49 
set. The subplot of Figure 8 in the main article. 50 
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Figure S6. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on carbonate test 53 
set. The subplot of Figure 8 in the main article. 54 



 

 

56 

57 

58 

Figur62 
coal t63 
image64 
sharp65 

re S7. Additio
test set. Botto
es (MASR min

per. 

onal qualitati
om: Differenc
nus RCAN).  T

ive compariso
ce maps of MA
The difference

on of our mo
ASR and RCA
e maps show

odel with oth
AN SR results 
w that the edg

er works at ×
in the above

ge recovered

 

×4 SR on the 
e two sets of 

 by MASR is 

 

5 



 

 

63 

64 

65 

Figur69 
sands70 
sets o71 
MASR72 

re S8. Additio
stone test set
of images (MA
R is sharper. 

onal qualitati
t. Bottom: Dif
ASR minus RC

ive compariso
fference map
CAN).  The dif

on of our mo
ps of MASR an
fference map

odel with oth
nd RCAN SR r
ps show that 

er works at ×
results in the 
the edge rec

×4 SR on the 
above two 
overed by 

 

6 



 

 

71 

72 

72 

Figur76 
carbo77 
sets o78 
MASR79 

re S9. T Addit
onate test set
of images (MA
R is sharper. 

tional qualita
. Bottom: Dif

ASR minus RC

ative compar
fference map
CAN).  The dif

ison of our m
s of MASR an
fference map

model with ot
nd RCAN SR re
ps show that 

ther works at
esults in the 
the edge rec

 

t ×4 SR on the
above two 
overed by 

 

7 

e 


