REFERENCES
Adejuyigbe, C.O., Tian, G. & Adeoye, G.O. (2006). Microcosmic study of soil microarthropod and earthworm interaction in litter decomposition and nutrient turnover. Nutr Cycl Agroecosys , 75, 47-55.
Anderson, J.M. (1978). Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia , 32, 341-348.
Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F. et al. (2019). Termites mitigate the effects of drought in tropical rainforest. Science , 363, 174-177.
Bastida, F., Eldridge, D.J., Abades, S., Alfaro, F.D., Gallardo, A., García-Velázquez, L. et al. (2020). Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol , 29, 752-761.
Berg, B. & McClaugherty, C. (2020). Plant litter: decomposition, humus formation, carbon sequestration. Springer press , pp. 17-25.
Bignell, D.E. (2019). Termite Ecology in the First Two Decades of the 21st Century: A Review of Reviews. Insects , 10, 60.
Bignell, D.E. & Eggleton, P. (2000). Termites in Ecosystems. In:Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T, Bignell, DE & Higashi, M). Springer Netherlands Dordrecht, pp. 363-387.
Birhanu, I., Muktar, M. & Kibebew, K. (2016). Impact of deforestation and subsequent cultivation on soil fertility in Komto, Western Ethiopia.J. Soil Sci. Environ , 7, 212-221.
Bishop, T.R., Griffiths, H.M., Ashton, L.A., Eggleton, P., Woon, J.S. & Parr, C.L. (2021). Clarifying terrestrial recycling pathways.Trends Ecol. Evol , 36, 9-11.
Bracken, M.B. & Sinclair, J.C., . (1992). Statistical methods for analysis of effects of treatment in overviews of randomized trials. Effective care of the newborn infant. Oxford University Press, Oxford.
Bradford, M.A., Warren Ii, R.J., Baldrian, P., Crowther, T.W., Maynard, D.S., Oldfield, E.E. et al. (2014). Climate fails to predict wood decomposition at regional scales. Nat Clim Chang , 4, 625-630.
Bretz, F., Hothorn, T., Westfall, P., Heiberger, R.M., Schuetzenmeister, A. & Scheibe, S. (2010). Simultaneous inference in general parametric models. In: Multiple Comparisons Using R . CRC Press, p. 44.
Brussaard, L., Aanen, D., Briones, M., Decaëns, T., Deyn, G.B., Fayle, T. et al. (2012). Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Soil Ecology and Ecosystem Services . Oxford University Press, pp. 201-231.
Buitenwerf, R., Stevens, N., Gosling, C.M., Anderson, T.M. & Olff, H. (2011). Interactions between large herbivores and litter removal by termites across a rainfall gradient in a South African savanna. J Trop Ecol , 27, 375-382.
Burda, B.U., O’Connor, E.A., Webber, E.M., Redmond, N. & Perdue, L.A. (2017). Estimating data from figures with a Web-based program: considerations for a systematic review. Res. Synth. Methods , 8, 258-262.
Castanho, C.T., Lorenzo, L. & de Oliveira, A.A. (2012). The importance of mesofauna and decomposition environment on leaf decomposition in three forests in southeastern Brazil. Plant Ecol , 213, 1303-1313.
Cebrian, J. (1999). Patterns in the fate of production in plant communities. Am. Nat , 154, 449-468.
Chang, W.H. & Lai, A.G. (2018). Mixed evolutionary origins of endogenous biomass-depolymerizing enzymes in animals. BMC Genomics , 19.
Cifuentes-Croquevielle, C., Stanton, D.E. & Armesto, J.J. (2020). Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci Rep-Uk , 10, 7762.
Cotrufo, M.F., Ngao, J., Marzaioli, F. & Piermatteo, D. (2010). Inter-comparison of methods for quantifying above-ground leaf litter decomposition rates. Plant Soil , 334, 365-376.
Crowther, T.W., Van Den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L. et al. (2019). The global soil community and its influence on biogeochemistry. Science , 365, eaav0550.
David, J.-F. & Handa, I.T. (2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change.Biol. Rev , 85, 881-895.
David, J.F. (2014). The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biol. Biochem , 76, 109-118.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E. et al. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience , 67, 534-545.
Eggleton, P. & Tayasu, I. (2001). Feeding groups, lifetypes and the global ecology of termites. Ecol Res , 16, 941-960.
Filser, J., Faber, J.H., Tiunov, A.V., Brussaard, L., Frouz, J., De Deyn, G. et al. (2016). Soil fauna: Key to new carbon models.SOIL-GERMANY , 2, 565-582.
García-Palacios, P., Maestre, F.T., Kattge, J. & Wall, D.H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol , 16, 1045-1053.
Grandy, A.S., Wieder, W.R., Wickings, K. & Kyker-Snowman, E. (2016). Beyond microbes: Are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem , 102, 40-44.
Griffiths, H.M., Ashton, L.A., Evans, T.A., Parr, C.L. & Eggleton, P. (2019). Termites can decompose more than half of deadwood in tropical rainforest. Curr Biol , 29, R118-R119.
Griffiths, H.M., Ashton, L.A., Parr, C.L. & Eggleton, P. (2021a). The impact of invertebrate decomposers on plants and soil. New Phytol , 231, 2142-2149.
Griffiths, H.M., Ashton, L.A., Walker, A.E., Hasan, F., Evans, T.A., Eggleton, P. et al. (2018). Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol , 87, 293-300.
Griffiths, H.M., Eggleton, P., Hemming-Schroeder, N., Swinfield, T., Woon, J.S., Allison, S.D. et al. (2021b). Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest tree-fall canopy gaps. Glob Chang Biol , 27, 1601-1613.
Guénard, B., Perrichot, V. & Economo, E.P. (2015). Integration of global fossil and modern biodiversity data reveals dynamism and stasis in ant macroecological patterns. J. Biogeogr , 42, 2302-2312.
Handa, I.T., Aerts, R., Berendse, F., Berg, M.P., Bruder, A., Butenschoen, O. et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature , 509, 218-221.
Hättenschwiler, S., Tiunov, A.V. & Scheu, S. (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst , 36, 191-218.
Heděnec, P., Jiménez, J.J., Moradi, J., Domene, X., Hackenberger, D., Barot, S. et al. (2022). Global distribution of soil fauna functional groups and their estimated litter consumption across biomes.Sci Rep-Uk , 12.
Hedges, L.V., Gurevitch, J. & Curtis, P.S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology , 80, 1150-1156.
Hoeffner, K., Santonja, M., Cluzeau, D. & Monard, C. (2019). Epi-anecic rather than strict-anecic earthworms enhance soil enzymatic activities.Soil Biol. Biochem , 132, 93-100.
Hogan, M., Veivers, P.C., Slaytor, M. & Czolij, R.T. (1988). The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol , 34, 891-899.
Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araujo, M.B., Dimitrov, D. et al. (2013). An update of wallace’s zoogeographic regions of the world. Science , 339, 74-78.
Huang, W., González, G. & Zou, X. (2020). Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol , 150.
Johnson, D., Krsek, M., Wellington, E.M., Stott, A.W., Cole, L., Bardgett, R.D. et al. (2005). Soil invertebrates disrupt carbon flow through fungal networks. Science , 309, 1047.
Joly, F.-X., Coq, S., Coulis, M., Jean-François, D., Hättenschwiler, S., Mueller, C.W. et al. (2020). Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun Biol , 3.
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol , 47, 215-222.
Kampichler, C. & Bruckner, A. (2009). The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol. Rev , 84, 375-389.
Kass, J.M., Guénard, B., Dudley, K.L., Jenkins, C.N., Azuma, F., Fisher, B.L. et al. (2022). The global distribution of known and undiscovered ant biodiversity. Sci. Adv , 8, eabp9908.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P. et al. (2020). TRY plant trait database – enhanced coverage and open access. Glob Chang Biol , 26, 119-188.
Korboulewsky, N., Perez, G. & Chauvat, M. (2016). How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem , 94, 94-106.
Kurokawa, H. & Nakashizuka, T. (2008). Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology , 89, 2645-2656.
Kurokawa, H., Peltzer, D.A. & Wardle, D.A. (2010). Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct. Ecol , 24, 513-523.
Lan, L., Yang, F., Zhang, L., Yang, W., Wu, F., Xu, Z. et al.(2019). Non-target effects of naphthalene on the soil microbial biomass and bacterial communities in the subalpine forests of western China.Sci Rep-Uk , 9, 9811-9818.
Lan, L.Y., Zhang, L., Shen, Y., Zhang, J., Yang, W.Q., Xu, Z.F. et al. (2020). Naphthalene exerts non-target effects on the abundance of active fungi by stimulating basidiomycete abundance. J Mt Sci-Engl , 17, 2001-2010.
Lavelle, P., Chauvel, A. & Fragoso, C. (1995). Principles and management: proceedings of the third international symposium on plant-soil interactions at low pH. In: Faunal activity in acid soils (eds. Date, RA, Grundon, NJ, Rayment, GE & Probert, ME). Springer Netherlands Dordrecht, pp. 201-211.
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E.et al. (2022). Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr , 31, 1261-1276.
Lehmann, J. & Kleber, M. (2015). The contentious nature of soil organic matter. Nature , 528, 60-68.
Liria, J., Szumik, C.A. & Goloboff, P.A. (2021). Analysis of endemism of world arthropod distribution data supports biogeographic regions and many established subdivisions. Cladistics , 37, 559-570.
Liu, Z.G. & Zou, X.M. (2002). Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest. Ecol Appl , 12, 1406-1417.
McCary, M.A. & Schmitz, O.J. (2021). Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis.J Anim Ecol , 90, 1714-1726.
Mucina, L. (2019). Biome: evolution of a crucial ecological and biogeographical concept. New Phytol , 222, 97-114.
Ni’matuzahroh, Affandi, M., Fatimah, Trikurniadewi, N., Khiftiyah, A.M., Sari, S.K. et al. (2022). Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol , 204, 210.
Olson, J. (1963). Energy storage and balance of producers and decomposers in a young scots pine stand in central Sweden. Oikos , 34, 322-331.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A.et al. (2011). A large and persistent carbon sink in the world’s forests. Science , 333, 988-993.
Pan, Y., Birdsey, R.A., Phillips, O.L. & Jackson, R.B. (2013). The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst , 44, 593-622.
Pauchet, Y., Wilkinson, P., Chauhan, R. & Ffrench-Constant, R.H. (2010). Diversity of beetle genes encoding novel plant cell wall degrading enzymes. Plos One , 5, e15635-e15635.
Pausas, J.G. & Bond, W.J. (2020). On the three major recycling pathways in terrestrial ecosystems. Trends Ecol Evol , 35, 767-775.
Phillips, H.R.P., Bach, E.M., Bartz, M.L.C., Bennett, J.M., Beugnon, R., Briones, M.J.I. et al. (2021). Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Sci. Data , 8.
Shelomi, M., Wipfler, B., Zhou, X. & Pauchet, Y. (2019). Multifunctional cellulase enzymes are ancestral in Polyneoptera.Insect Mol. Biol , 29, 124-135.
Su, H., Feng, Y., Chen, J., Chen, J., Ma, S., Fang, J. et al.(2021). Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology , 102, e03370.
Swift, M.J., Heal, O.W. & Anderson, J.M. (1979). Decomposition in terrestrial ecosystems . Blackwell Scientific Publications, Oxford.
Tan, B., Yin, R., Zhang, J., Xu, Z., Liu, Y., He, S. et al.(2020). Temperature and Moisture Modulate the Contribution of Soil Fauna to Litter Decomposition via Different Pathways. Ecosystems , 24, 1142-1156.
Tao, J., Zuo, J., He, Z., Wang, Y., Liu, J., Liu, W. et al.(2019). Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species.Funct. Ecol , 33, 1798-1810.
Thakur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R., Rice, K.E. et al. (2018). Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat Clim Change , 8, 75-+.
van den Hoogen, J., Geisen, S., Wall, D.H., Wardle, D.A., Traunspurger, W., de Goede, R.G.M. et al. (2020). A global database of soil nematode abundance and functional group composition. Sci Data , 7, 103.
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor package. J. Stat. Softw , 36, 1 - 48.
Wall, D.H., Bardgett, R.D. & Kelly, E. (2010). Biodiversity in the dark. Nat. Geosci , 3, 297-298.
Wall, D.H., Bradford, M.A., St. John, M.G., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E. et al. (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Chang Biol , 14, 2661-2677.
Wieder, W.R., Grandy, A.S., Kallenbach, C.M., Taylor, P.G. & Bonan, G.B. (2015). Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci. Model Dev , 8, 1789-1808.
Wiens, J.J. & Donoghue, M.J. (2004). Historical biogeography, ecology and species richness. Trends Ecol. Evol , 19, 639-644.
Xu, X., Sun, Y., Sun, J., Cao, P., Wang, Y., Chen, H.Y.H. et al.(2020). Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis. Geoderma , 378.
Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M. et al. (2010). Climate control of terrestrial carbon exchange across biomes and continents. Environ. Res. Lett , 5.
Zanne, A.E., Flores-Moreno, H., Powell, J.R., Cornwell, W.K., Dalling, J.W., Austin, A.T. et al. (2022). Termite sensitivity to temperature affects global wood decay rates. Science , 377, 1440-1444.
Zhang, Y.-Y., Wu, W. & Liu, H. (2019). Factors affecting variations of soil pH in different horizons in hilly regions. Plos One , 14, e0218563-e0218563.
Figure 1 Global distribution of forest leaf litter decomposition experiment used in this study. The map indicates a total of 476 observations at 93 sites across the world superimposed on the background of biome patterns.
Figure 2 Soil invertebrate contributions to forest litter decomposition across regions. (a) Relative contributions of soil invertebrates (blue) and microorganisms (grey) to forest litter decomposition against absolute latitude. (b) Effect sizes of soil invertebrates on forest litter decomposition at global, regional, and biome scales. The errors represent 95% confidence intervals. The numbers of observations are in the brackets. Positive mean effect sizes indicate soil invertebrates significantly contribute to forest litter decomposition.
Figure 3 Soil invertebrate effect sizes on forest leaf litter decomposition across zoogeographic realms. The numbers of observation are in the brackets. Realms with ≥ 5 observations are included. Colors are identical in forest plot and map, realms with observations less than 5 are indicated by the grey color. The errors represent 95% confidence intervals.
Figure 4 Influence of(a) termite diversity, (b) litter C: N ratio,(c) litter lignin: N ratio, (d) mean annual temperature (MAT), (e) mean annual precipitation (MAP), and(f) soil pH on invertebrate effect sizes determined using mixed-effect meta regressions. Point sizes represent the relative weights (log) of corresponding observations. Significant correlations (P < 0.05) are shown with solid regression lines with 95% confidence intervals.