References
Barton, N. H. (1980). The fitness of hybrids between two chromosomal
races of the grasshopper Podisma pedestris . Heredity ,45 (1), 47–59. doi:10.1038/hdy.1980.49
Barton, N. H., & Hewitt, G. M. (1981). The genetic basis of hybrid
inviability in the grasshopper Podisma pedestris .Heredity , 47 (3), 367–383. doi:10.1038/hdy.1981.98
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software ,67 (1), 1–48. doi:10.18637/jss.v067.i01
Bensasson, D., Petrov, D. A., Zhang, D.-X., Hartl, D. L., & Hewitt, G.
M. (2001). Genomic gigantism: DNA loss is slow in mountain grasshoppers.Molecular Biology and Evolution , 18 (2), 246–253.
doi:10.1093/oxfordjournals.molbev.a003798
Bensasson, D., Zhang, D.-X., Hartl, D. L., & Hewitt, G. M. (2001).
Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends
in Ecology & Evolution , 16 (6), 314–321.
doi:10.1016/S0169-5347(01)02151-6
Bensasson, D., Zhang, D.-X., & Hewitt, G. M. (2000). Frequent
assimilation of mitochondrial DNA by grasshopper nuclear genomes.Molecular Biology and Evolution , 17 (3), 406–415.
doi:10.1093/oxfordjournals.molbev.a026320
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C.,
Fritzsch, G., … Stadler, P. F. (2013). MITOS: Improved de novo
metazoan mitochondrial genome annotation. Molecular Phylogenetics
and Evolution , 69 (2), 313–319. doi:10.1016/j.ympev.2012.08.023
Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids
Research , 27 (8), 1767–1780. doi:10.1093/nar/27.8.1767
Brower, A. V. (1994). Rapid morphological radiation and convergence
among races of the butterfly Heliconius erato inferred from
patterns of mitochondrial DNA evolution. Proceedings of the
National Academy of Sciences , 91 (14), 6491 LP – 6495.
doi:10.1073/pnas.91.14.6491
Cheng, S., Melkonian, M., Smith, S. A., Brockington, S., Archibald, J.
M., Delaux, P.-M., … Wong, G. K.-S. (2018). 10KP: A phylodiverse
genome sequencing plan. GigaScience , 7 (3), giy013.
doi:10.1093/gigascience/giy013
Dierckxsens, N., Mardulyn, P., & Smits, G. (2016). NOVOPlasty: de
novo assembly of organelle genomes from whole genome data.Nucleic Acids Research , 45 (4), gkw955.
doi:10.1093/nar/gkw955
Dodsworth, S., Chase, M. W., Kelly, L. J., Leitch, I. J., Macas, J.,
Novák, P., … Leitch, A. R. (2015). Genomic repeat abundances
contain phylogenetic signal. Systematic Biology , 64 (1).
doi:10.1093/sysbio/syu080
Doležel, J., Bartoš, J., Voglmayr, H., & Greilhuber, J. (2003). Letter
to the editor. Cytometry , 51A (2), 127–128.
doi:10.1002/cyto.a.10013
Hawlitschek, O., Morinière, J., Lehmann, G. U. C., Lehmann, A. W.,
Kropf, M., Dunz, A., … Haszprunar, G. (2017). DNA barcoding of
crickets, katydids and grasshoppers (Orthoptera) from Central Europe
with focus on Austria, Germany and Switzerland. Molecular Ecology
Resources , 17 (5), 1037–1053. doi:10.1111/1755-0998.12638
Hazkani-Covo, E., Zeller, R. M., & Martin, W. (2010). Molecular
poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear
genomes. PLoS Genetics , 6 (2), e1000834.
doi:10.1371/journal.pgen.1000834
Hewitt, G. M., & John, B. (1972). Inter-population sex chromosome
polymorphism in the grasshopper Podisma pedestris .Chromosoma , 37 (1), 23–42. doi:10.1007/BF00329555
Hotopp, J. C. D., Clark, M. E., Oliveira, D. C. S. G., Foster, J. M.,
Fischer, P., Torres, M. C. M., … Werren, J. H. (2007). Widespread
lateral gene transfer from intracellular bacteria to multicellular
eukaryotes. Science , 317 (5845), 1753 LP – 1756.
doi:10.1126/science.1142490
Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., dePamphilis, C. W., Yi,
T.-S., & Li, D.-Z. (2020). GetOrganelle: a fast and versatile toolkit
for accurate de novo assembly of organelle genomes. Genome
Biology , 21 (1), 241. doi:10.1186/s13059-020-02154-5
John, B., & Hewitt, G. M. (1970). Inter-population sex chromosome
polymorphism in the grasshopper Podisma pedestris .Chromosoma , 31 (3), 291–308. doi:10.1007/BF00321226
Kolodner, R., & Tewari, K. K. (1979). Inverted repeats in chloroplast
DNA from higher plants. Proceedings of the National Academy of
Sciences , 76 (1), 41 LP – 45. doi:10.1073/pnas.76.1.41
Lansman, R. A., Shade, R. O., Shapira, J. F., & Avise, J. C. (1981).
The use of restriction endonucleases to measure mitochondrial DNA
sequence relatedness in natural populations. Journal of Molecular
Evolution , 17 (4), 214–226.
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington,
J., Crandall, K. A., … Zhang, G. (2018). Earth BioGenome Project:
Sequencing life for the future of life. Proceedings of the
National Academy of Sciences , 115 (17), 4325 LP – 4333.
doi:10.1073/pnas.1720115115
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics , 25 (14),
1754–1760. doi:10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
… Subgroup, 1000 Genome Project Data Processing. (2009). The
sequence alignment/map format and SAMtools. Bioinformatics ,25 (16), 2078–2079. doi:10.1093/bioinformatics/btp352
Li, W., Freudenberg, J., & Freudenberg, J. (2019). Alignment-free
approaches for predicting novel nuclear mitochondrial segments (NUMTs)
in the human genome. Gene , 691 , 141–152.
doi:https://doi.org/10.1016/j.gene.2018.12.040
Liang, B., Wang, N., Li, N., Kimball, R. T., & Braun, E. L. (2018).
Comparative genomics reveals a burst of homoplasy-free numt insertions.Molecular Biology and Evolution , 35 (8), 2060–2064.
doi:10.1093/molbev/msy112
Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., & O’Brien, S. J. (1994).
Numt, a recent transfer and tandem amplification of mitochondrial DNA to
the nuclear genome of the domestic cat. Journal of Molecular
Evolution , 39 (2), 174–190. doi:10.1007/BF00163806
Macher, J.-N., Zizka, V. M. A., Weigand, A. M., & Leese, F. (2018). A
simple centrifugation protocol for metagenomic studies increases
mitochondrial DNA yield by two orders of magnitude. Methods in
Ecology and Evolution , 9 (4), 1070–1074.
doi:https://doi.org/10.1111/2041-210X.12937
McElroy, K., Beattie, K., Symonds, M. R. E., & Joseph, L. (2018).
Mitogenomic and nuclear diversity in the mulga parrot of the Australian
arid zone: cryptic subspecies and tests for selection. Emu -
Austral Ornithology , 118 (1), 22–35.
doi:10.1080/01584197.2017.1411765
Mower, J. P., Sloan, D. B., & Alverson, A. J. (2012). Plant
Mitochondrial Genome Diversity: The Genomics Revolution BT - Plant
Genome Diversity Volume 1: Plant Genomes, their Residents, and their
Evolutionary Dynamics. In J. F. Wendel, J. Greilhuber, J. Dolezel, & I.
J. Leitch (Eds.) (pp. 123–144). Vienna: Springer Vienna.
doi:10.1007/978-3-7091-1130-7_9
Nacer, D. F., & Raposo do Amaral, F. (2017). Striking pseudogenization
in avian phylogenetics: Numts are large and common in falcons.Molecular Phylogenetics and Evolution , 115 , 1–6.
doi:https://doi.org/10.1016/j.ympev.2017.07.002
Naciri, Y., & Manen, J.-F. (2010). Potential DNA transfer from the
chloroplast to the nucleus in Eryngium alpinum . Molecular
Ecology Resources , 10 (4), 728–731.
doi:https://doi.org/10.1111/j.1755-0998.2009.02816.x
Nichols, R. A., & Hewitt, G. M. (1988). Genetical and ecological
differentiation across a hybrid zone. Ecological Entomology ,13 (1), 39–49. doi:10.1111/j.1365-2311.1988.tb00331.x
Nikoh, N., McCutcheon, J. P., Kudo, T., Miyagishima, S., Moran, N. A.,
& Nakabachi, A. (2010). Bacterial genes in the aphid genome: Absence of
functional gene transfer from Buchnera to its host. PLOS
Genetics , 6 (2), e1000827. Retrieved from
https://doi.org/10.1371/journal.pgen.1000827
Pereira, S. L., & Baker, A. J. (2004). Low number of mitochondrial
pseudogenes in the chicken (Gallus gallus ) nuclear genome:
Implications for molecular inference of population history and
phylogenetics. BMC Evolutionary Biology , 4 (1), 17.
doi:10.1186/1471-2148-4-17
Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren,
S., … Jarvis, E. D. (2021). Towards complete and error-free
genome assemblies of all vertebrate species. Nature ,592 (7856), 737–746. doi:10.1038/s41586-021-03451-0
Ricchetti, M., Tekaia, F., & Dujon, B. (2004). Continued Colonization
of the Human Genome by Mitochondrial DNA. PLOS Biology ,2 (9), e273. Retrieved from
https://doi.org/10.1371/journal.pbio.0020273
Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic
genomes. Molecular Biology and Evolution , 21 (6), 1081–4.
doi:10.1093/molbev/msh110
Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J.,
Hegarty, R., … Jaffe, D. B. (2013). Characterizing and measuring
bias in sequence data. Genome Biology , 14 (5), R51.
doi:10.1186/gb-2013-14-5-r51
Schultz, J. A., & Hebert, P. D. N. (2022). Do pseudogenes pose a
problem for metabarcoding marine animal communities? Molecular
Ecology Resources , n/a (n/a).
doi:https://doi.org/10.1111/1755-0998.13667
Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many
species in one: DNA barcoding overestimates the number of species when
nuclear mitochondrial pseudogenes are coamplified. Proceedings of
the National Academy of Sciences , 105 (36), 13486–13491.
doi:10.1073/pnas.0803076105
Sorenson, M. D., & Quinn, T. W. (1998). Numts: A challenge for avian
systematics and population biology. The Auk , 115 (1),
214–221. doi:10.2307/4089130
Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C.,
& Liston, A. (2012). Navigating the tip of the genomic iceberg:
Next-generation sequencing for plant systematics. American Journal
of Botany , 99 (2), 349–64. doi:10.3732/ajb.1100335
The Darwin Tree of Life Project Consortium. (2022). Sequence locally,
think globally: The Darwin Tree of Life Project. Proceedings of
the National Academy of Sciences , 119 (4), e2115642118.
doi:10.1073/pnas.2115642118
Twyford, A. D., & Ness, R. W. (2016). Strategies for complete plastid
genome sequencing. Molecular Ecology Resources .
doi:10.1111/1755-0998.12626
Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient
Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (pp. 314–324). doi:10.1109/IPDPS.2019.00041
Vaughan, H. E., Heslop-Harrison, J. S., & Hewitt, G. M. (1999). The
localization of mitochondrial sequences to chromosomal DNA in
orthopterans. Genome , 42 (5), 874–880. doi:10.1139/g99-020
Vendrami, D. L. J., Gossmann, T. I., Chakarov, N., Paijmans, A. J.,
Eyre-Walker, A., Forcada, J., & Hoffman, J. I. (2022). Signatures of
selection on mitonuclear integrated genes uncover hidden mitogenomic
variation in fur seals. Genome Biology and Evolution , evac104.
doi:10.1093/gbe/evac104
Westerman, M., Barton, N. H., & Hewitt, G. M. (1987). Differences in
DNA content between two chromosomal races of the grasshopperPodisma pedestris . Heredity , 58 (2), 221–228.
doi:10.1038/hdy.1987.36
Wicke, S., Schneeweiss, G. M., DePamphilis, C. W., Müller, K. F., &
Quandt, D. (2011). The evolution of the plastid chromosome in land
plants: gene content, gene order, gene function. Plant Molecular
Biology , 76 (3–5), 273–97. doi:10.1007/s11103-011-9762-4
Woischnik, M., & Moraes, C. T. (2002). Pattern of organization of human
mitochondrial pseudogenes in the nuclear genome. Genome Research ,12 (6), 885–893. doi:10.1101/gr.227202
Zhan, X., Pan, S., Wang, J., Dixon, A., He, J., Muller, M. G., …
Bruford, M. W. (2013). Peregrine and saker falcon genome sequences
provide insights into evolution of a predatory lifestyle. Nature
Genetics , 45 (5), 563–566. doi:10.1038/ng.2588
Zhang, D.-X., & Hewitt, G. M. (1996a). Highly conserved nuclear copies
of the mitochondrial control region in the desert locustSchistocerca gregaria : some implications for population studies.Molecular Ecology , 5 (2), 295–300.
doi:https://doi.org/10.1046/j.1365-294X.1996.00078.x
Zhang, D.-X., & Hewitt, G. M. (1996b). Nuclear integrations: challenges
for mitochondrial DNA markers. Trends in Ecology & Evolution ,11 (6), 247–251. doi:10.1016/0169-5347(96)10031-8