\(\frac{\partial}{\partial x}\left(K\left(H-B\right)\frac{\partial H}{\partial x}\right)+\frac{\partial}{\partial y}\left(K\left(H-B\right)\frac{\partial H}{\partial y}\right)+W=\mu\frac{\partial H}{\partial t},\left(x,y\right)\in D\) (1)
\(H\left(x,y,t\right)\left|\tau_{1}\right.\ =H_{1}\left(x,y,t\right),\left(x,y\right)\in\tau_{1},t\geq 0\) (2)
\(K\left(H-B\right)\frac{\partial H\left(x,y\right)}{\partial n}\left|\tau_{2}\right.\ =q\left(x,y,t\right),\left(x,y\right)\in\tau_{2}\) (3)
\(H\left(x,y,t\right)\left|t=0\right.\ =H_{0}\left(x,y\right),\left(x,y\right)\in D\) (4)