References
Arora, N., Schuenemann, V. J., Jäger, G., Peltzer, A., Seitz, A.,
Herbig, A., … Bagheri, H.C. (2016). Origin of modern syphilis and
emergence of a pandemic Treponema pallidum cluster. Nat
Microbiol, 2, 16245. https://doi.org/10.5167/uzh-134132
Avril, A., Léonard, Y., Letty, J., Péroux, R., Guitton, J.- S., &
Pontier, D. (2011). Natal dispersal of European hare in a high-density
population. Mamm Biol, 76, 148–156.
https://doi.org/10.1016/j.mambio.2010.07.001
Beale, M. A., Marks, M., Cole, M. J., Lee, M.- K., Pitt, R., Ruis,
… Thomson, N.R. (2021). Global phylogeny of Treponema
pallidum lineages reveals recent expansion and spread of contemporary
syphilis. Nat Microbiol, 6, 1549–1560.
https://doi.org/10.1038/s41564-021-01000-z
Canu, A., Scandura, M., Luchetti, S., Cossu, A., Iacolina, L., Bazzanti,
M., & Apollonio, M. (2013). Influence of management regime and
population history on genetic diversity and population structure of
brown hares (Lepus europaeus ) in an Italian province. Eur J
Wildlife Res, 59, 783–793. https://doi.org/10.1007/s10344-013-0731-x
Castillo-Lizardo, M., Henneke, G., & Viguera, E. (2014). Replication
slippage of the thermophilic DNA polymerases B and D from the
Euryarchaeota Pyrococcus abyssi . Front Microbiol, 5, 403.
https://doi.org/10.3389/fmicb.2014.00403
Čejková, D., M. Zobaníková, L. Chen, P. Pospíšilová, M. Strouhal, X.
Qin, L. Mikalová, S.J. Norris, D.M. Muzny, R.A. Gibbs, L.L. Fulton, E.
Sodergren, G.M. Weinstock, and D. Šmajs, 2012: Whole genome sequences of
three Treponema pallidum ssp. pertenue strains: yaws and
syphilis treponemes differ in less than 0.2% of the genome sequence.
Plos Neglect Trop D 6, e1471,
https://doi.org/10.1371/journal.pntd.0001471
Chambers, L. C., Srinivasan, S., Lukehart, S. A., Ocbamichael, N.,
Morgan, J. L., Lowens, M. S., … Manhart, L. E. (2018). Primary
Syphilis in the Male Urethra: A Case Report. Clin Infect Dis, 68,
1231–1234. https://doi.org/10.1093/cid/ciy771
Chuma, I. S., Batamuzi, E. K., Collins, D. A., Fyumagwa, R. D.,
Hallmaier-Wacker, L. K., Kazwala, R. R., … Knauf, S. (2018).
Widespread Treponema pallidum Infection in Nonhuman Primates,
Tanzania. Emerg Infect Dis, 24,1002–1009.
https://doi.org/10.3201/eid2406.180037
Chuma, I. S., Roos, C., Atickem, A., Bohm, T., Collins, D. A., Grillová,
L., … Knauf, S. (2019). Strain diversity of Treponema
pallidum subsp. pertenue suggests rare interspecies transmission
in African nonhuman primates. Sci Rep, 9, 14243.
https://doi.org/10.1038/s41598-019-50779-9
Deitsch, K. W., Lukehart, S. A., & Stringer, J. R. (2009). Common
strategies for antigenic variation by bacterial, fungal and protozoan
pathogens. Nat Rev Microbiol, 7, 493–503.
https://doi.org/10.1038/nrmicro2145
Gao, F., Chen, C., Arab, D. A., Du, Z., He, Y., & Ho, S. Y. W. (2019).
EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol
Evol, 9, 3891–3898. https://doi.org/10.1002/ece3.5015
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation
Using Multiple Sequences. Statist Sci, 7, 457-472.
https://doi.org/10.1214/ss/1177011136
Gogarten, J. F., Düx, A., Mubemba, B., Pléh, K., Hoffmann, C., Mielke,
A., … Leendertz, F. H. (2019). Tropical rainforest flies carrying
pathogens form stable associations with social nonhuman primates. Mol
Ecol, 28, 4242–4258. https://doi.org/10.1111/mec.15145
Grillova, L., K. Jolley, D. Šmajs, and M. Picardeau, 2019: A public
database for the new MLST scheme for Treponema pallidum subsp.pallidum : surveillance and epidemiology of the causative agent
of syphilis. PeerJ 6, e6182, https://doi.org/10.7717/peerj.6182.
Hisgen, L., Abel, L., Hallmaier-Wacker, L., Lüert, S., Lavazza, A.,
Trogu, T., … Knauf, S. (2021). The distribution of lagomorph
syphilis caused by Treponema paraluisleporidarum in Europe. Eur J
Wildlife Res, 67, 92. https://doi.org/10.1007/s10344-021-01535-w
Hisgen, L., Abel, L., Hallmaier‐Wacker, L. K., Lueert, S., Siebert, U.,
Faehndrich, M., … Knauf, S. (2020). High syphilis seropositivity
in European brown hares (Lepus europaeus ), Lower Saxony, Germany.
Transbound Emerg Dis, 67, 2240–2244. https://doi.org/10.1111/tbed.13551
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L.
S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol
Biol Evol, 35, 518–522. https://doi.org/10.1093/molbev/msx281
Houinei, W., Godornes, C., Kapa, A., Knauf, S., Mooring, E. Q.,
González-Beiras, C., … Mitjá, O. (2017). Haemophilus
ducreyi DNA is detectable on the skin of asymptomatic children, flies
and fomites in villages of Papua New Guinea. Plos Negl Trop Dis, 11,
e0004958. https://doi.org/10.1371/journal.pntd.0004958
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., &
Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate
Phylogenetic Estimates. Nat Methods, 14, 587–589.
https://doi.org/10.1038/nmeth.4285
Knauf, S., Gogarten, J. F., Schuenemann, V. J., Nys, H. M. D., Düx, A.,
Strouhal, M., … Calvignac-Spencer, S. (2018). Nonhuman primates
across sub-Saharan Africa are infected with the yaws bacteriumTreponema pallidum subsp. pertenue . Emerg Microbes Infec,
7, 157. https://doi.org/10.1038/s41426-018-0156-4
Knauf, S., Raphael, J., Mitjà, O., Lejora, I. A. V., Chuma, I. S.,
Batamuzi, E. K., … Lukehart, S. A. (2016). Isolation ofTreponema DNA from Necrophagous Flies in a Natural Ecosystem.
EBioMedicine, 11, 85–90. https://doi.org/10.1016/j.ebiom.2016.07.033
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A.
(2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455.
https://doi.org/10.1093/bioinformatics/btz305
Lavazza, A., Cavadini, P., Barbieri, I., Tizzani, P., Pinheiro, A.,
Abrantes, J., … Capucci, L. (2015). Field and experimental data
indicate that the eastern cottontail (Sylvilagus floridanus ) is
susceptible to infection with European brown hare syndrome (EBHS) virus
and not with rabbit haemorrhagic disease (RHD) virus. Vet Res, 46, 13.
https://doi.org/10.1186/s13567-015-0149-4
Lukehart, S. A. (2008). Biology of Treponemes. In: Holmes, K. K.,
Sparling, P. F., Stamm, W. E., Piot, P., Wasserheit, J. N., Corey, L.,
… Watts, D. H. (Eds), Sexually Transmitted Diseases (pp.
647–659). New York: Mc Graw Hill Medical.
Lukehart, S. A., & Marra, C. M. (2007). Isolation and Laboratory
Maintenance of Treponema pallidum . Curr Protoc Microbiol, 7,
12A.1.1-12A.1.18. https://doi.org/10.1002/9780471729259.mc12a01s7
Maděránková, D., Mikalová, L., Strouhal, M., Vadják, Š., Kuklová, I.,
Pospíšilová, P., … Šmajs, D. (2019). Identification of positively
selected genes in human pathogenic treponemes: syphilis-, yaws-, and
bejel-causing strains differ in sets of genes showing adaptive
evolution. Plos Neglect Trop Dis, 13, e0007463.
https://doi.org/10.1371/journal.pntd.0007463
Majander, K., Pfrengle, S., Kocher, A., Neukamm, J., du Plessis, L.,
Pla-Díaz, M., … Schuenemann, V. J. (2020). Ancient Bacterial
Genomes Reveal a High Diversity of Treponema pallidum Strains in
Early Modern Europe. Curr Biol, 30, 3788-3803.e10.
https://doi.org/10.1016/j.cub.2020.07.058
Marques, J. P., Farelo, L., Vilela, J., Vanderpool, D., Alves, P. C.,
Good, J. M., … Melo-Ferreira, J. (2017). Range expansion
underlies historical introgressive hybridization in the Iberian hare.
Sci Rep-uk 7, 40788, https://doi.org/10.1038/srep40788
Marques, J. P., Ferreira, M. S., Farelo, L., Callahan, C. M.,
Hackländer, K., Jenny, H., … Melo-Ferreira, J. (2017). Mountain
hare transcriptome and diagnostic markers as resources to monitor
hybridization with European hares. Sci Data 4, 170178,
https://doi.org/10.1038/sdata.2017.178
Masseti, M., & Marinis, A. M. D. (2008). Prehistoric and Historic
Artificial Dispersal of Lagomorphs on the Mediterranean Islands. In:
Alves, P. C., Ferrand, N., & Hackländer, K. (Eds.), Lagomorph
Biology: Evolution, Ecology, and Conservation (pp. 13–25). Heidelberg:
Springer
Matějková, P., Flasarová, M., Zákoucká, H., Bořek, M., Křemenová, S.,
Arenberger, P., … Šmajs, D. (2009). Macrolide treatment failure
in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA
gene of Treponema pallidum subsp. pallidum . J Med
Microbiol, 58, 832–836. https://doi.org/10.1099/jmm.0.007542-0
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M.
D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and
Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol
Biol Evol, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., &
Pond, S. L. K. (2012) Detecting Individual Sites Subject to Episodic
Diversifying Selection. Plos Genet, 8, e1002764.
https://doi.org/10.1371/journal.pgen.1002764
Nováková, M., Najt, D., Mikalová, L., Kostková, M., Vrbová, E.,
Strouhal, M., … Šmajs, D. (2019). First report of hare
treponematosis seroprevalence of European brown hares (Lepus
europaeus ) in the Czech Republic: seroprevalence negatively correlates
with altitude of sampling areas. BMC Vet Res, 15, 350.
https://doi.org/10.1186/s12917-019-2086-3
Pětrošová, H., Pospíšilová, P., Strouhal, M., Čejková, D., Zobaníková,
M., Mikalová, L., … Šmajs, D. (2013). Resequencing ofTreponema pallidum ssp. pallidum strains Nichols and SS14:
correction of sequencing errors resulted in increased separation of
syphilis treponeme subclusters. Plos One, 8, e74319.
https://doi.org/10.1371/journal.pone.0074319
Pierpaoli, M., Riga, F., Trocchi, V., & Randi, E. (1999). Species
distinction and evolutionary relationships of the Italian hare
(Lepus corsicanus ) as described by mitochondrial DNA sequencing.
Mol Ecol, 8, 1805–1817.
https://doi.org/10.1046/j.1365-294x.1999.00766.x
Pohjoismäki, J. L. O., Michell, C., Levänen, R., & Smith, S. (2021).
The best of both worlds: Shortcutting evolution through adaptive
hybridization in hares. PREPRINT (Version 1) available at Research
Square. https://doi.org/10.21203/rs.3.rs-329700/v1
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A.,
Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient
Bayesian Phylogenetic Inference and Model Choice Across a Large Model
Space. Systematic Biol, 61, 539–542.
https://doi.org/10.1093/sysbio/sys029
Sánchez-García, C., Pérez, J. A., Armenteros, J. A., Gaudioso, V. R., &
Tizado, E. J. (2021). Survival, spatial behaviour and resting place
selection of translocated Iberian hares Lepus granatensis in
Northwestern Spain. Eur J Wildl Res, 67, 22.
https://doi.org/10.1007/s10344-021-01464-8
Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic
impact of historical hybridization with massive mitochondrial DNA
introgression. Genome Biol, 19, 91.
https://doi.org/10.1186/s13059-018-1471-8
Šmajs, D., Zobaníková, M., Strouhal, M., Čejková, D., Dugan-Rocha, S.,
Pospíšilová, P., … Weinstock, G. M. (2011). Complete Genome
Sequence of Treponema paraluiscuniculi , Strain Cuniculi A: The
Loss of Infectivity to Humans Is Associated with Genome Decay. Plos One,
6, e20415. https://doi.org/10.1371/journal.pone.0020415
Sokos, C., Birtsas, P., Papaspyropoulos, K. G., Giannakopoulos, A.,
Athanasiou, L. V., Manolakou, K., … Billinis, C. (2015).
Conservation Considerations for a Management Measure: An Integrated
Approach to Hare Rearing and Release. Environ Manage, 55, 19–30.
https://doi.org/10.1007/s00267-014-0388-6
Strouhal, M., Šmajs, D., Matejková, P., Sodergren, E., Amin, A., Howell,
J., … Weinstock, G. M. (2007). Genome differences betweenTreponema pallidum subsp. pallidum strain Nichols andT. paraluiscuniculi strain Cuniculi A. Infect Immun, 75,
5859–5866. https://doi.org/10.1128/IAI.00709-07
Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Pond,
S. L. K. (2018). Datamonkey 2.0: a modern web application for
characterizing selective and other evolutionary processes. Mol Biol
Evol, 35, 773–777. https://doi.org/10.1093/molbev/msx335
Zhou, Z., Alikhan, N. F., Sergeant, M. J., Luhmann, N., Vaz, C.,
Francisco, A. P., … Achtmann, M. (2018). GrapeTree: visualization
of core genomic relationships among 100,000 bacterial pathogens. Genome
research, 28, 1395–1404.
https://doi.org/10.1101/gr.232397.117