References
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L.,
Han, X., 2010. Tradeoffs and thresholds in the effects of nitrogen
addition on biodiversity and ecosystem functioning: evidence from inner
Mongolia Grasslands. Glob. Change Biol. 16, 358–372.
Bayliss, P., Choquenot, D., 2002. The numerical response: rate of
increase and food limitation in herbivores and predators. Philos. Trans.
R. Soc. Lond. B. Biol. Sci. 357, 1233–1248.
https://doi.org/10.1098/rstb.2002.1124
Belovsky, G.E., 1986. Optimal foraging and community structure:
implications for a guild of generalist grassland herbivores. Oecologia
70, 35–52.
Benoit, L., Hewison, A.M., Coulon, A., Debeffe, L., Grémillet, D.,
Ducros, D., Cargnelutti, B., Chaval, Y., Morellet, N., 2020.
Accelerating across the landscape: The energetic costs of natal
dispersal in a large herbivore. J. Anim. Ecol. 89, 173–185.
Bergman, C.M., Fryxell, J.M., Gates, C.C., Fortin, D., 2001a. Ungulate
foraging strategies: energy maximizing or time minimizing? J. Anim.
Ecol. 70, 289–300.
Bergman, C.M., Fryxell, J.M., Gates, C.C., Fortin, D., 2001b. Ungulate
foraging strategies: energy maximizing or time minimizing? J. Anim.
Ecol. 70, 289–300. https://doi.org/10.1111/j.1365-2656.2001.00496.x
Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs,
M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M.,
Schtickzelle, N., Stevens, V.M., Vandewoestijne, S., Baguette, M.,
Barton, K., Benton, T.G., Chaput-Bardy, A., Clobert, J., Dytham, C.,
Hovestadt, T., Meier, C.M., Palmer, S.C.F., Turlure, C., Travis, J.M.J.,
2012. Costs of dispersal. Biol. Rev. 87, 290–312.
https://doi.org/10.1111/j.1469-185X.2011.00201.x
Brown, J.S., Kotler, B.P., Porter, W.P., 2017. How foraging allometries
and resource dynamics could explain Bergmann’s rule and the body‐size
diet relationship in mammals. Oikos 126, oik.03468.
https://doi.org/10.1111/oik.03468
Chimienti, M., Desforges, J.-P., Beumer, L.T., Nabe-Nielsen, J., van
Beest, F.M., Schmidt, N.M., 2020. Energetics as common currency for
integrating high resolution activity patterns into dynamic energy
budget-individual based models. Ecol. Model. 434, 109250.
https://doi.org/10.1016/j.ecolmodel.2020.109250
Fagan, W.F., Lewis, M.A., Auger‐Méthé, M., Avgar, T., Benhamou, S.,
Breed, G., LaDage, L., Schlägel, U.E., Tang, W., Papastamatiou, Y.P.,
2013. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329.
Fortin, D., 2006. The Allometry of Plant Spacing That Regulates Food
Intake Rate in Mammalian Herbivores. Ecology 87, 1861–1866.
https://doi.org/10.1890/0012-9658(2006)87[1861:TAOPST]2.0.CO;2
Gleiss, A.C., Wilson, R.P., Shepard, E.L., 2011. Making overall dynamic
body acceleration work: on the theory of acceleration as a proxy for
energy expenditure. Methods Ecol. Evol. 2, 23–33.
Gregorini, P., Gunter, S.A., Beck, P.A., 2008. Matching plant and animal
processes to alter nutrient supply in strip-grazed cattle: Timing of
herbage and fasting allocation1. J. Anim. Sci. 86, 1006–1020.
https://doi.org/10.2527/jas.2007-0432
Gross, J.E., Zank, C., Hobbs, N.T., Spalinger, D.E., 1995. Movement
rules for herbivores in spatially heterogeneous environments: responses
to small scale pattern. Landsc. Ecol. 10, 209–217.
Halsey, L.G., Shepard, E.L., Wilson, R.P., 2011. Assessing the
development and application of the accelerometry technique for
estimating energy expenditure. Comp. Biochem. Physiol. A. Mol. Integr.
Physiol. 158, 305–314.
Hazen, E.L., Friedlaender, A.S., Goldbogen, J.A., 2015. Blue whales
(Balaenoptera musculus) optimize foraging efficiency by balancing oxygen
use and energy gain as a function of prey density. Sci. Adv. 1,
e1500469. https://doi.org/10.1126/sciadv.1500469
Hudson, L.N., Isaac, N.J., Reuman, D.C., 2013. The relationship between
body mass and field metabolic rate among individual birds and mammals.
J. Anim. Ecol. 82, 1009–1020.
Hudson, R., 2018. Body size, energetics, and adaptive radiation, in:
Bioenergetics of Wild Herbivores. CRC Press, pp. 1–24.
Illius, A.W., Gordon, I.J., 1992. Modelling the nutritional ecology of
ungulate herbivores: evolution of body size and competitive
interactions. Oecologia 89, 428–434.
John R., S., Król, E., 2010. Maximal heat dissipation capacity and
hyperthermia risk: neglected key factors in the ecology of endotherms.
J. Anim. Ecol. 79, 726–746.
https://doi.org/10.1111/j.1365-2656.2010.01689.x
Kamra, D.N., Pawar, M., Singh, B., 2012. Effect of plant secondary
metabolites on rumen methanogens and methane emissions by ruminants.
Diet. Phytochem. Microbes 351–370.
Karasov, W.H., 1992. Daily energy expenditure and the cost of activity
in mammals. Am. Zool. 32, 238–248.
Klarevas‐Irby, J.A., Wikelski, M., Farine, D.R., 2021. Efficient
movement strategies mitigate the energetic cost of dispersal. Ecol.
Lett. 24, 1432–1442. https://doi.org/10.1111/ele.13763
Li, C., Alatengdalai, Xue, S., Tajima, A., Ishikawa, N., 2015.
Estimation of herbage intake and digestibility of grazing sheep in
Zhenglan Banner of Inner Mongolia by using n-alkanes. Anim. Nutr. 1,
324–328. https://doi.org/10.1016/j.aninu.2015.11.004
McLean, J.A., 1972. On the calculation of heat production from
open-circuit calorimetric measurements. Br. J. Nutr. 27, 597–600.
Miwa, M., Oishi, K., Nakagawa, Y., Maeno, H., Anzai, H., Kumagai, H.,
Okano, K., Tobioka, H., Hirooka, H., 2015. Application of overall
dynamic body acceleration as a proxy for estimating the energy
expenditure of grazing farm animals: relationship with heart rate. PloS
One 10, e0128042.
Mysterud, A., 2006. The concept of overgrazing and its role in
management of large herbivores. Wildl. Biol. 12, 129–141.
Nagy, K.A., 2005. Field metabolic rate and body size. J. Exp. Biol. 208,
1621–1625.
Nagy, K.A., Girard, I.A., Brown, T.K., 1999. ENERGETICS OF FREE-RANGING
MAMMALS, REPTILES, AND BIRDS. Annu. Rev. Nutr. 19, 247–277.
https://doi.org/10.1146/annurev.nutr.19.1.247
Norberg, R.Å., 2021. To minimize foraging time, use high‐efficiency,
energy‐expensive search and capture methods when food is abundant but
low‐efficiency, low‐cost methods during food shortages. Ecol. Evol. 11,
16537–16546.
Oonincx, D.G.A.B., Broekhoven, S. van, Huis, A. van, Loon, J.J.A. van,
2015. Feed Conversion, Survival and Development, and Composition of Four
Insect Species on Diets Composed of Food By-Products. PLOS ONE 10,
e0144601. https://doi.org/10.1371/journal.pone.0144601
Pyke, G.H., 1984. Optimal foraging theory: a critical review. Annu. Rev.
Ecol. Syst. 15, 523–575.
Roehe, R., Dewhurst, R.J., Duthie, C.-A., Rooke, J.A., McKain, N., Ross,
D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M., Wallace,
R.J., 2016. Bovine Host Genetic Variation Influences Rumen Microbial
Methane Production with Best Selection Criterion for Low Methane
Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene
Abundance. PLOS Genet. 12, e1005846.
https://doi.org/10.1371/journal.pgen.1005846
Sanna, F., Re, G.A., Piluzza, G., Campesi, G., Sulas, L., 2019. Forage
yield, nutritive value and N-fixation ability of legume based swards are
affected by light intensity in a Mediterranean agroforestry system.
Agrofor. Syst. 93, 2151–2161.
Shipley, L.A., 2007. The influence of bite size on foraging at larger
spatial and temporal scales by mammalian herbivores. Oikos 116,
1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x
Sollenberger, L.E., Agouridis, C.T., Vanzant, E.S., Franzluebbers, A.J.,
Owens, L.B., 2012. Prescribed grazing on pasturelands.
Spalinger, D.E., Hobbs, N.T., 1992. Mechanisms of foraging in mammalian
herbivores: new models of functional response. Am. Nat. 140, 325–348.
Speakman, J.R., Chi, Q., Ołdakowski, Ł., Fu, H., Fletcher, Q.E., Hambly,
C., Togo, J., Liu, X., Piertney, S.B., Wang, X., Zhang, L., Redman, P.,
Wang, L., Tang, G., Li, Y., Cui, J., Thomson, P.J., Wang, Z., Glover,
P., Robertson, O.C., Zhang, Y., Wang, D., 2021. Surviving winter on the
Qinghai-Tibetan Plateau: Pikas suppress energy demands and exploit yak
feces to survive winter. Proc. Natl. Acad. Sci. 118, e2100707118.
https://doi.org/10.1073/pnas.2100707118
Speakman, J.R., Król, E., 2010. Maximal heat dissipation capacity and
hyperthermia risk: neglected key factors in the ecology of endotherms.
J. Anim. Ecol. 79, 726–746.
https://doi.org/10.1111/j.1365-2656.2010.01689.x
Stigter, J.D., Van Langevelde, F., 2004. Optimal harvesting in a
two-species model under critical depensation: the case of optimal
harvesting in semi-arid grazing systems. Ecol. Model. 179, 153–161.
Vallentine, J.F., 2000. Grazing management. Elsevier.
Van der Graaf, A.J., Stahl, J., Bakker, J.P., 2005. Compensatory Growth
of Festuca rubra after Grazing: Can Migratory Herbivores Increase Their
Own Harvest during Staging? Funct. Ecol. 19, 961–969.
Van Dyck, H., Baguette, M., 2005. Dispersal behaviour in fragmented
landscapes: Routine or special movements? Basic Appl. Ecol. 6, 535–545.
https://doi.org/10.1016/j.baae.2005.03.005
Van Soest, P.J., 2018. Nutritional ecology of the ruminant. Cornell
university press.
Van Soest, P.J., 1996. Allometry and ecology of feeding behavior and
digestive capacity in herbivores: a review. Zoo Biol. Publ. Affil. Am.
Zoo Aquar. Assoc. 15, 455–479.
Venter, J.A., Vermeulen, M.M., Brooke, C.F., 2019. Feeding ecology of
large browsing and grazing herbivores. Ecol. Brows. Grazing II 127–153.
Wang, J., Bell, M., Liu, X., Liu, G., 2020. Machine-learning techniques
can enhance dairy cow estrus detection using location and acceleration
data. Animals 10, 1160.
White, C.R., Blackburn, T.M., Seymour, R.S., 2009. Phylogenetically
informed analysis of the allometry of mammalian basal metabolic rate
supports neither geometric nor quarter-power scaling. Evolution 63,
2658–2667.
Williams, T.M., Wolfe, L., Davis, T., Kendall, T., Richter, B., Wang,
Y., Bryce, C., Elkaim, G.H., Wilmers, C.C., 2014. Instantaneous
energetics of puma kills reveal advantage of felid sneak attacks.
Science 346, 81–85. https://doi.org/10.1126/science.1254885
Wilmshurst, J.F., Fryxell, J.M., Bergman, C.M., 2000. The allometry of
patch selection in ruminants. Proc. R. Soc. Lond. B Biol. Sci. 267,
345–349. https://doi.org/10.1098/rspb.2000.1007
Wilson, R.P., Neate, A., Holton, M.D., Shepard, E.L.C., Scantlebury,
D.M., Lambertucci, S.A., Di Virgilio, A., Crooks, E., Mulvenna, C.,
Marks, N., 2018. Luck in Food Finding Affects Individual Performance and
Population Trajectories. Curr. Biol. 28, 3871-3877.e5.
https://doi.org/10.1016/j.cub.2018.10.034
Yu, H., Klaassen, M., 2021. R package for animal behavior classification
from accelerometer data—rabc. Ecol. Evol. 11, 12364–12377.
Zubieta, A.S., Marín, A., Savian, J.V., Soares Bolzan, A.M., Rossetto,
J., Barreto, M.T., Bindelle, J., Bremm, C., Quishpe, L.V., Valle, S. de
F., 2021. Low-intensity, high-frequency grazing positively affects
defoliating behavior, nutrient intake and blood indicators of nutrition
and stress in sheep. Front. Vet. Sci. 8, 631820.