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Abstract5

Landscape structure plays a key role in mediating a variety of ecological processes affecting bio-6

diversity patterns, however its precise effects and the mechanisms underpinning them remain7

unclear. While the effects of landscape structure have been extensively investigated both empiri-8

cally, and theoretically from a metapopulation perspective, the effects of spatial structure at the9

landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt10

to address this gap using a spatially explicit, individual-based metacommunity model to explore11

the effects of landscape compositional heterogeneity and per se spatial configuration on diversity12

at the landscape and patch level via their influence on long term community assembly processes.13

Our model simulates communities composed of species of annual, asexual organisms living, re-14

producing, dispersing, and competing within grid-based, fractal landscapes which vary in their15

magnitude of spatial environmental heterogeneity and in their degree of spatial environmental16

autocorrelation. Communities are additionally subject to temporal environmental fluctuation17

and external immigration, allowing for turnover in community composition. We found that com-18

positional heterogeneity and spatial autocorrelation had differing effects on richness and diversity19

and the landscape and patch scales. We also note a slight negative effect of compositional het-20

erogeneity on median total landscape population size. Landscape level diversity was driven by21

community dissimilarity at the patch level and increased with greater heterogeneity, while land-22

scape richness was largely the result of short-term accumulation of immigrants and decreased23

with greater compositional heterogeneity. Both richness and diversity decreased in variance with24
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greater compositional heterogeneity, indicating a reduction in community turnover over time.25

Patch-level richness and diversity patterns appeared to be driven by overall landscape richness26

and local mass effects, resulting in maximum patch level richness and diversity at moderate levels27

of compositional heterogeneity and high spatial autocorrelation.28

Introduction29

Land-use change and habitat destruction remain the principle drivers of biodiversity loss today30

(Newbold et al., 2015; Ellis, 2021; Davison et al., 2021). A major consequence of the two processes31

is the alteration of the structure of landscapes by changing the types of environments present in32

the landscape (composition) and by changing the spatial arrangement of those environment types33

(configuration) (Fahrig, 2003). Landscape structure mediates a large variety of evolutionary and34

ecological processes such as adaptation and community assembly through its effects on the move-35

ment and dispersal of organisms (Holt and Barfield, 2011; Tscharntke et al., 2012; Forester et al.,36

2016; Zarnetske et al., 2017; Fahrig, 2020) and thus has important implications for biodiversity37

conservation. A thorough understanding of the role of landscape structure in mediating these38

processes is therefore critical to developing effective conservation strategies (Sanderson et al.,39

2002; Rodewald and Arcese, 2016).40

Landscape structure has received considerable research attention in recent decades. While41

greater compositional complexity is expected to result in a larger overall diversity of species42

(Tews et al., 2004; Stein et al., 2014), the effects of landscape spatial configuration on diversity43

have been subject to considerable debate (Villard and Metzger, 2014; Hanski, 2015; Fletcher Jr44

et al., 2018; Fahrig et al., 2019; Semper-Pascual et al., 2021). Configurational effects on diversity45

have typically been investigated in the context of biodiversity conservation in the face of habitat46

fragmentation. Habitat fragmentation has traditionally been viewed as negative for biodiversity47

based on island biogeography and metapopulation theory predictions. Habitat fragmentation is48

expected to reduce species richness by reducing habitat patch size, and splitting species pop-49

ulations into smaller, more isolated sub-populations thereby increasing the per patch risk of50

extinction and reducing the frequency of recolonization (MacArthur and Wilson, 1967; Hanski,51

1998; Hill and Caswell, 1999). The conclusion that habitat fragmentation is generally negative52

for biodiversity has been challenged on the grounds that many studies on habitat fragmenta-53

tion measure effects only at the patch scale and do not effectively discriminated between effects54

resulting from habitat loss and effects of the spatial arrangement itself (fragmentation per se)55

(McGarigal and Cushman, 2002; Fahrig, 2003; Tscharntke et al., 2012; Arroyo-Rodŕıguez et al.,56

2017). Indeed, when total habitat area is controlled for, biodiversity responses to fragmentation57

are often either non-significant or positive (Tscharntke et al., 2012; Fahrig, 2017). This apparent58



lack of a consistent negative effect on species richness has lead to the proposal that total habitat59

amount is the primary determinant of diversity with configuration playing only a minor role60

(Fahrig, 2013; Watling et al., 2020). This hypothesis has been disputed on the basis of conflicting61

empirical evidence (Hanski, 2015; Haddad et al., 2017), as well as due to the lack of a mechanistic62

explanation (Hanski, 2015). Other authors have pointed out that habitat amount and spatial63

configuration can interact in a variety of complex ways to influence diversity (Boeye et al., 2014;64

Villard and Metzger, 2014; Rybicki et al., 2020; Püttker et al., 2020).65

While the effect of landscape structure on biodiversity has been extensively investigated em-66

pirically, the majority of empirical studies on landscape structure are observational studies which67

rely fundamentally on correlative approaches and thus can reveal statistical associations, but can-68

not give direct insight into causal mechanisms underpinning the patterns they observe (Hanski,69

2015; Ovaskainen et al., 2019). Mechanistic modeling approaches have the advantage of allowing70

direct control over compositional and configurational structure as well as ecological mechanisms,71

thus permitting detailed experiments which can provide direct insight into causal mechanisms72

(Higgins et al., 2012; Hanski, 2015; Cabral et al., 2017). Numerous modeling studies have in-73

vestigated the impacts of landscape structure from a metapopulation perspective (e.g. Hill and74

Caswell, 1999). These models often explicitly consider spatial structure, but only consider pop-75

ulations of a single species. Conclusions regarding community level processes drawn from such76

studies are thus based on extrapolation from the species to community level. This approach77

is problematic because different processes acting at different levels of organization can produce78

counter-intuitive patterns (McGill, 2019). Metacommunity models consider multiple interacting79

species, but metacommunity modeling simulation studies investigating biodiversity often do not80

explicitly consider spatial structure or consider it only in very simplified forms with no explic-81

itly defined spatial geometry (Biswas and Wagner, 2012; Ryberg and Fitzgerald, 2016; Zarnetske82

et al., 2017; Ai and Ellwood, 2022), while those that do often model landscapes as islands of habi-83

tat embedded in a homogeneous, typically uninhabitable matrix (e.g. Thompson et al., 2017;84

Firkowski et al., 2022). Such an assumption is problematic for terrestrial landscapes where stark,85

abrupt shifts in environmental conditions over space are rare and few areas of the landscape can86

be said to be truly uninhabitable. Indeed, many species exploit multiple habitat types (Hein87

et al., 2003; Jules and Shahani, 2003) and different species living within the same habitat may88

vary considerably in their their tolerance for environmental variation and thus may have different89

perceptions of what is habitat and non-habitat (Prevedello and Vieira, 2010). It may thus be90

more appropriate in many cases to model landscapes as habitat mosaics or as fractal environmen-91

tal gradients (Fischer and B. Lindenmayer, 2006; Franklin and Lindenmayer, 2009; Matthews,92

2021), but this is not commonly done (but see Münkemüller et al., 2012).93

Here, we attempt to address this gap using a spatially explicit, individual-based metacom-94
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munity model to systematically explore the effects of landscape structure on patterns of species95

richness and diversity via their influence on long term community assembly processes. Specifi-96

cally, we ask how varying the strength of compositional heterogeneity and environmental spatial97

autocorrelation affects patterns of species richness and diversity at the landscape and patch level.98

Our model simulates communities composed of species of annual, asexual organisms living, repro-99

ducing, dispersing, and competing within continuous grid-based fractal landscapes which vary in100

their magnitude of spatial environmental heterogeneity and in their degree of spatial environmen-101

tal autocorrelation. Communities are additionally subject to temporal environmental fluctuation102

and external immigration, allowing for turnover in community composition. Our model produces103

output data covering ”taxonomic” richness and diversity of simulated organisms as well as data104

on organism niches, fitness, and dispersal behavior. This study, however, will focus specifically105

results relating to taxonomic richness and diversity.106

Model Description107

We constructed a spatially explicit, individual-based model, implemented in Julia 1.1.1 (Bezanson108

et al., 2012), simulating communities of asexual organisms with varying environmental niches and109

dispersal tendencies in a grid-based landscape of patches with varying environments, based on110

the model developed by Sieger and Hovestadt (2020). Our model makes several extensions to111

this framework, including the addition of a second patch environment attribute, as well as the112

inclusion of two dispersal modes.113

Landscape properties114

Landscapes consist of spatially autocorrelated toroidal grids of habitat patches generated via and115

R implementation of the toroidal landscape generation algorithm from (Saupe, 1988). Landscapes116

dimensions were set at 20 patches by 20 patches for a total of 400 patches per landscape. These117

dimensions were chosen in order to limit computation time while still being large enough for118

structure driven patterns to emerge. Landscapes possess two independent spatially variable119

environmental attributes, one representing patch temperature (T ) and a second attribute H120

representing an additional, unspecified abiotic environmental variable (e.g. a soil property). The121

degree of spatial autocorrelation of patch environment attributes is determined by the Hurst index122

parameter during landscape generation. In this study, all landscapes have a Hurst index value of123

either 0 or 1. In addition to varying spatially, T also fluctuates globally over time, with a mean124

fluctuation of 0 and a standard deviation of 1. Temporal fluctuations are normally distributed125

with a standard deviation of 1. Baseline patch attribute values are approximately normally126

distributed and were standardized to a standard deviation of 1 and a mean of approximately127
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0 by multiplying each the attributes of each patch by 1 over the standard deviation of patch128

attributes and then calculating the landscape’s mean attributes and subtracting the mean from129

each patch. The standard deviation can be further modified by gradient strength multiplier G,130

which can be used to expand or reduce the range of patch attribute values.131

Organism properties132

Patches are inhabited by populations of asexual organisms which belong to species which are133

distinguished from one another by their environmental niches and by their dispersal tendencies.134

These species behave as a guild of ecologically similar species which compete with each other135

within a patch. Organism niches are modeled as a Gaussian curve whose center and spread136

are defined by the niche optimum and tolerance traits. Organisms have optimum and tolerance137

traits for both patch environment attributes. Organisms also possess two traits which define their138

dispersal behavior, an emigration probability trait defining the chance of an organism emigrating139

from its natal patch, and a trait defining the organism’s probability of dispersing via random140

global dispersal versus nearest neighbor dispersal. Organism traits are summarized in table 1.141

Organism traits are initialized by randomly by drawing from a distribution. Niche optimum142

traits are drawn from a normal distribution with a μ of 0 and σ equal to G. Tolerance traits are143

drawn from a log normal distribution with a μ and σ of 0 and 1 respectively. Dispersal traits are144

drawn from a uniform distribution with a minimum of 0 and a maximum of 1.145

Organism life-cycle146

Organisms have annual life cycles with complete replacement of the population at the end of a147

generation. Life cycles consist of discrete reproduction, competition, and dispersal phases (Figure148

2). During the reproductive phase, organisms reproduce asexually to produce offspring with149

identical traits to their parents. The number of offspring is drawn from a Poisson distribution,150

with the expected reproductive output determined by an organism’s fitness within its patch151

environment within a given time step as given by equation 1. Here, Efert is the expected number152

of offspring, R0 is an organism’s intrinsic maximum expected offspring (kept at a constant value153

of 15), Tpatch and Hpatch are the temperature and habitat values for a given patch. Reproductive154

output is additionally limited by a trade-off between niche breadth and maximum expected155

offspring, the strength of which is determined by the trade-off parameter α. (Chaianunporn and156

Hovestadt, 2012; Sieger et al., 2019); lower values produce stronger trade-offs. As the effect157

of varying α is functionally the same as the effect of varying the strength of G, α is kept at158

a constant value of 3 in this study. After reproduction, offspring undergo a maturation phase159

in which they compete on an equal basis with other offspring within the same patch. Survival160

of the competition phase is density dependent and regulated via the Beverton-Holt equations161
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(Equations 2. and 3.; Beverton & Holt 1957), where SA is the expected surviving offspring, L0 is162

the total offspring, and K is the carrying capacity of a patch if all organisms in the patch have an163

Efert equal to R0 and thus perfect fitness. Note that because patch carrying capacity is affected164

by Efert, maladaptation may reduce the realized carrying capacity of a patch. The value of K165

is set at 150 individuals, which allows for relatively stable patch populations while maintaining166

low computation time. The number of surviving offspring are determined by drawing a random167

number from a binomial distribution with a mean of SA. Surviving offspring are then able to168

disperse to a new patch and start the cycle anew.169

Efert = R0 · e
−(Tpatch−Topt)

2T2
sd · e

−(Hpatch−Hopt)

2H2
sd · e

−Tsd
2α2 · e

−Hsd
2α2 (1)

SA =
1

1 + a · L0
(2)

a =
R0 − 1

K ·R0
(3)

Dispersal170

Mature organisms can disperse to other patches in the landscape by two different methods, nearest171

neighbor dispersal or random global dispersal. In nearest neighbor dispersal, the organism moves172

to an adjacent patch with the coordinates x + p and y + q, where p and q are integers between173

-1 and 1. If the destination patch’s coordinates are outside the bounds of the landscape, the174

dispersing organism is instead moved to the opposite side of the landscape. In random global175

dispersal, the organism is moved to a random patch in the landscape. Whether or not an organism176

disperses and its mode of dispersal are determined by drawing a random number from a uniform177

distribution and checking whether it is less than or equal to Pdisp. If the organism disperses,178

another random number is drawn from a uniform distribution and compared with Pglobal to179

determine whether the organism uses nearest neighbor or random global dispersal.180

Immigration from external sources181

New organism species can immigrate into the landscape from the outside. The number of new182

immigrants is randomly drawn from a Poisson distribution with an expected value of Eimmi. In183

our simulations, Eimmi is set at a constant expected value of 2.5 immigrants per patch. This184

amounts on average to approximately 0.0011% of the expected local offspring production for a185

patch with a perfectly adapted population at carrying capacity. Immigrants are generated with186

randomized traits within a patch and added to the new generation along with existing offspring.187

Since immigrants arrive in the landscape from places which may have considerably different188
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environmental conditions, immigrant niche optima are drawn from broader distributions than189

those used for initialization. Distribution parameters for immigrant traits are summarized in190

table 2.191

Initialization and experiment design192

Landscapes are initialized from text file inputs containing the T and H values for each patch.193

Landscapes are uninhabited at initialization and can be colonized by immigrant species over the194

course of the simulation. We ran simulations over two sets of 30 landscapes, one set generated195

with a Hurst index of 1 and the other generated with a Hurst index of 0. These simulations196

were repeated for eight different values of G (G ∈ 0, 0.05, 0.1, 0.3, 0.7, 1, 1.3, 1.7), resulting in a197

total of 16 scenarios with 30 replicates each. Simulations were run for 10,000 time steps. Model198

parameters are summarized in table 3. Data on landscape total population size, richness, and199

Shannon-Wiener diversity were recorded for every time step of the simulation for a combined200

total of 300,000 observations for each combination of Hurst index and G. Data on the individual201

organisms, the patches they inhabit, and their species were recorded at the end of the final time202

step of the simulation. Patch level statistics calculated from data on individuals for population203

size, richness, and Shannon-Wiener diversity for a combined total of 12,000 observations for204

each combination of Hurst index and G. Replicates were numbered 1 through 30. The replicate205

numbers were used as random number generator seeds to ensure replicability.206

Analysis207

Data visualization was performed in R 3.6.3 (R Core Team, 2020) using the ggplot2 package208

(Wickham, 2016). We did not perform any statistical significance tests as such tests are not209

useful or meaningful in the context of mechanistic modeling due to the extreme sensitivity of210

such tests to small differences when used with a very large numbers of observations (White et al.,211

2014). Instead, results were assessed visually via plots. We assessed landscape-level patterns212

via the distribution of landscape richness and Shannon-Weiner diversity between the 5000th and213

10,000th time steps, and patch-level patterns via the distribution of patch richness and Shannon-214

Weiner diversity at the end of the simulation.215

Results216

Landscape total population rapidly increases withing the first 50 time steps, settling into a stable217

median slightly below the landscape carrying capacity of 60000 individuals (150 individuals per218

patch) around which it fluctuated. Median total population declined slightly with increasing G219

at both the landscape and patch levels (Figure 3). Richness and diversity at both the landscape220
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and patch level responded to both compositional heterogeneity and spatial autocorrelation, with221

differing responses occurring at the landscape at patch levels (Figure 4). Responses to composi-222

tional heterogeneity were non-linear in all cases with notable shifts typically starting at G=0.1.223

At the landscape level, median richness decreased with increasing G starting at G=0.1, declin-224

ing relatively steeply at first with diminishing declines beyond G=0.7. From G=0.7 onwards, a225

slight difference emerges between Hurst index scenarios with Hurst index=0 scenarios showing226

showing higher landscape richness. Landscape diversity showed an opposing pattern, increas-227

ing in median value with greater G, rapidly at first with increases diminishing beyond G=0.7.228

The precise relationship between landscape diversity and G was affected by spatial autocorre-229

lation. Below G=0.1, landscape diversity was higher in Hurst index=1 scenarios, while above230

this threshold, landscape diversity was higher in Hurst index=0 scenarios. Patch richness and231

diversity were unimodal in relation to G, peaking at G=0.3 and gradually declining thereafter.232

This pattern was notably pronounced for patch diversity, while for patch richness the response to233

G was more muted. Median patch diversity was consistently higher in Hurst index=1 scenarios,234

while a similar though less consistent pattern occurred with patch richness.235

Discussion236

Our simulation results showed that landscape structure had differing effects at the landscape and237

patch levels resulting from different processes acting at different scales. Total population size238

was slightly negatively affected by compositional heterogeneity. This was expected due to the239

greater chance for niche mismatches in dispersing organisms in high heterogeneity, resulting in240

more inconsistent individual fitness and a reduction in realized patch carrying capacities. Land-241

scape level diversity in this model resulted from community dissimilarity at the patch-level due242

to greater environmental heterogeneity and more fragmented spatial configuration. This finding243

aligns with the predictions of the dominance of β-diversity hypothesis (Tscharntke et al., 2012)244

and with empirical studies finding heterogeneity driven β-diversity to be an important driver of245

landscape-scale diversity (Quinn and Harrison, 1988; Tscharntke et al., 2002; Clough et al., 2007;246

Kessler et al., 2009; Wintle et al., 2019). The increase in diversity occurred despite a pattern247

of decreasing landscape-level richness in relation to environmental heterogeneity. Likewise, we248

found different patterns for landscape-level and patch-level richness and diversity, similar to pre-249

vious empirical research documenting contrasting biodiversity patterns at different scales (Chase250

and Leibold, 2002; Hendrickx et al., 2007; Flohre et al., 2011; Tello et al., 2015; Gao et al., 2021).251

Richness and diversity patterns at the patch level appear to be primarily related to overall land-252

scape richness (Tscharntke et al., 2012) and the strength of mass effects resulting from spillover253

from neighboring patches (Leibold et al., 2004). Our model demonstrates that these patterns254
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and processes can result from the combined effects of spatial autocorrelation and increasing sub-255

division of the landscape among different environments on rates of successful colonization and256

extinction. These findings have potentially important implications for biodiversity conservation257

as they suggest that there may be a trade-off in optimizing the design of biodiversity reserves for258

diversity at the patch versus landscape level.259

Increasing the compositional heterogeneity of a landscape increases the number of distinct260

environmental conditions in the landscape. The increasing range of environments in the land-261

scape increases the number of environment types available for organisms to exploit while also262

imposing increasing fitness costs for generalist organisms and increasing the risks of dispersal263

(Hastings 1983). Increasing compositional heterogeneity thus results in increasingly distinct lo-264

cal communities and increasingly local competition. This effect can be further compounded by265

highly fragmented spatial configurations, which may restrict organisms from colonizing all of266

their available habitat (Bascompte and Solé, 1996; Hill and Caswell, 1999; McInerny et al., 2007)267

and prevent competitors from interacting with each other (Boeye et al. (2014)), thus slowing268

or preventing competitive exclusion. Taken together, these effects may account for the higher269

diversity and the tendency toward slightly higher richness in landscapes with low spatial autocor-270

relation, as well as the lower patch-level diversity and the tendency toward lower patch richness271

in highly heterogeneous landscapes. Conversely, extremely homogeneous landscapes have only272

a narrow range of exploitable habitats and impose little cost to dispersal, resulting in intense,273

landscape-wide competition and producing homogeneous landscape communities dominated by a274

small number of highly competitive organisms. Meanwhile, moderate compositional heterogeneity275

allows for the formation of distinct local communities dominated by locally adapted organisms,276

but also permits enough dispersal for the emergence of source-sink dynamics leading to mass277

effects Leibold et al., 2004, which would explain why patch level richness and diversity peak at278

moderate levels of heterogeneity.279

The increasing subdivision of the landscape among different environment types also appears to280

affect establishment and survival of immigrant populations. In homogeneous landscapes, a certain281

portion of immigrants will be highly likely to establish populations due to the large number of282

suitable patches in the landscape. However, most immigrant populations will remain small due283

to intense, global competition with abundant, competitively dominant organisms. The small size284

of immigrant populations and the lack of bet-hedging opportunities in homogeneous landscapes285

renders these populations vulnerable to stochastic or disturbance-induced extinction (Lande,286

1993; Hanski, 1998), which may explain why variance in landscape richness and diversity is287

greater in more homogeneous landscapes. Homogenous landscapes can accumulate large numbers288

of species in the short term, but can also lose them very suddenly due to extreme environmental289

fluctuations. In highly heterogeneous landscapes, immigrants are unlikely to land in a suitable290
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patch, but those that do face only limited, local competition and are thus able to achieve larger291

population sizes on average than immigrants in homogeneous landscapes. This results in a292

landscape community which is less rich overall, but also less globally dominated by a small293

number of highly abundant species. Due to their larger population sizes and the bet-hedging294

opportunities afforded by a spatially heterogeneous environment, these populations are likely to295

survive extreme environmental fluctuations (Sieger and Hovestadt, 2020), resulting in a more296

stable landscape community composition in the longer term.297

As with all models, our model makes a number of simplifying assumptions. Organisms in298

this model possess annual life cycles with no overlap between generations. The inclusion of299

longer lived, iteroparous organisms would alter model dynamics due to the additional bet-hedging300

options such organisms have against temporal environmental variation as reproduction can be301

spread out over time, or timed to maximize their offspring’s chances of survival (Danforth, 1999;302

Hopper, 1999; Gremer and Venable, 2014), resulting in a lower extinction rate and slower turnover303

in community composition. In a model with competing annual and perennial organisms, this304

should result in a pattern of succession ending with long lived organisms dominating the land-305

scape. On the other hand, the slower population turnover in long-lived organisms may slow the306

process of adaptation to changing conditions and result in extinction debts (Hylander and Ehrlén,307

2013). Similarly, dormancy can serve to increase population persistence by serving as a sort of308

”dispersal through time” (Buoro and Carlson, 2014), allowing organisms to spread out risk tem-309

porally or avoid unfavorable conditions, which could increase landscape level diversity. Model310

results may also be affected by the dispersal strategies employed by organisms. Organisms in this311

model are limited to two modes of dispersal, both of which are undirected and independent of312

population density or other local conditions. Undirected, state- and fitness-independent dispersal313

carries significant risk that a dispersing organism will end up in an unsuitable habitat or disperse314

at an inopportune time. As such, fitness, and therefore population persistence, will be highly315

sensitive to spatial context. Informed and directed dispersal has the potential to greatly reduce316

the risks of dispersal (Lakovic et al., 2015), enabling more frequent dispersal in otherwise high317

risk spatial contexts (Sieger and Hovestadt, 2021). Directed long distance dispersal could improve318

population persistence in the landscape by facilitating colonization of otherwise isolated patches,319

but could also reduce β-diversity by allowing competitively dominant species to spread to suitable320

habitat more easily in more fragmented landscapes (Grainger and Gilbert, 2016; Catano et al.,321

2017). Biotic interactions such as mutualisms, facilitation, and trophic interactions also have the322

potential to shape biodiversity patterns in a variety of complex ways (Wardle, 2006; McIntire323

and Fajardo, 2014; Mod et al., 2016; Sandor et al., 2022), but only competition is considered in324

this study.325
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Conclusions326

Our study demonstrates the important role played by both compositional and configurational327

landscape structure in shaping community assembly processes, something which has previously328

received little attention in metacommunity simulation studies. Our model reproduced several329

patterns documented by previous empirical studies or predicted by theoretical research, all arising330

as a result of the effects of landscape structure on colonization, dispersal, and extinction rates. We331

found that different processes can dominate at different scales, leading to different relationships332

between richness, diversity, and landscape structure at the landscape and patch level. Our333

findings thus carry potentially significant implications for the design of biodiversity reserves334

as they suggest conservation trade-offs between different spatial structures at different spatial335

scales. Given the ongoing biodiversity crisis, there is an urgent need for additional research on336

the mechanisms underpinning spatial biodiversity patterns. Future studies should consider the337

roles of additional processes such as trophic interactions and mutualisms, as well as potential338

interactions with climate change.339
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Figures546

Figure 1. Example landscapes with low (Hurst index=0) and high (Hurst index=1) spatial
autocorrelation. Colors represent patch attribute values.

Figure 2. Box plots of landscape and patch level total population by G and Hurst index
scenario. Landscape population distributions are shown for time steps 5000 to 10000. Patch
distributions are shown for time step 10000.

19



Figure 3. Box plots of richness and Shannon diversity by G and Hurst index scenario.
Landscape level richness and diversity distributions are shown for time steps 5000 to 10000.
Patch distributions are shown for time step 10000.
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Tables547

Table 1. Organism Traits & Initialization Distribution Parameters.

Trait Symbol Distribution Parameters
Temperature Optimum Topt Normal μ= 0, σ= G
Temperature Tolerance Ttol Log-Normal μ= 0, σ= 1
Habitat Optimum Hopt Normal μ= 0, σ= G
Habitat Tolerance Htol Log-normal μ= 0, σ= 1
Dispersal Chance Pdisp Uniform 0,1
Dispersal Mode Preference Pglobal Uniform 0,1

Table 2. Immigrant trait distributions and parameters.

Trait Distribution Parameters
Topt Uniform μ = Ttrend, σ = 1.5 ∗G
Ttol Log-Normal μ = 0, σ = 1
Hopt Uniform μ = 0, σ= 1.5 * G
Htol Log-Normal μ = 0, σ = 1
Pdisp Uniform 0,1
Pglobal Uniform 0,1

Table 3. Summary of model parameters.

Parameter Symbol Value
Landscape dimensions 20*20 patches
Total simulation time-steps tmax 10,000
Niche breadth trade-off α 3
Patch Expected immigrants Eimmi 2.5
Gradient strength multiplier G ∈ 0, 0.05, 0.1, 0.3, 0.7, 1, 1.3, 1.7
Landscape Hurst Index Hurst ∈ 0, 1
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