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Appendix Table 2: Environmental and anthropogenic factors co-shape plant species richness across the 1 

Western Siberian tundra paper ODMAP protocol. 2 
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OVERVIEW 

Authorship  Authors: V. Zemlianskii, P. Brun, N.E. Zimmermann, K. Ermokhina, 
O. Khitun, N. Koroleva, G. Schaepman-Strub 

 Contact email: vitalii.zemlianskii@ieu.uzh.ch 

 Title: Climate and infrastructure co-shape plant species richness 
across the Western Siberian tundra 

 DOI: N/A 
 

Model Objective  Objective: Mapping/Explanation 

 Target output: predicted community-level species richness 

Taxon Vascular plants, mosses and lichens 

Location Western Siberian tundra, Russia 

Scale of analysis  Spatial extent (Lon/Lat): Longitude 66.8233 - 83.232754 E, Latitude 
73.495569 N - 66.479605 N 

 Spatial resolution: 1 km  

 Temporal resolution and extent: resolution none; extent of field 
sampling 2005-2018 

 Type of extent boundary: floristic (boundary of Yamal-Gydan 
floristic province (CAVM, 2003)) 

Biodiversity data 
overview 

 Observation type: Community plots 

 Response/Data type: species numbers 

Type of predictors  Climatic, topographic, anthropogenic 

Conceptual model / 

Hypothesis 
Species richness is co-shaped by natural (climate, topography, etc.) and 
anthropogenic factors 

Assumptions We assumed that (a) relevant ecological drivers (or proxies) of species 
richness are included, (b) detectability does not change across habitats, (c) 
sampling is adequate and representative(and any biases are accounted 
for/corrected), distance to infrastructure is an effective proxy to measure 
anthropogenic impact 

SDM algorithms  Model algorithms: We built macroecological models using GLMs, 
GAMs, GBMs and Random Forests algorithms and one ensemble 
method (the mean probability of occurrence from three best 
performing modelling algorithms). 

 Model tuning: For GLMs and GAMs, we step-wise optimized the 
Akaike information criterion by removing uninformative terms 
from the model equation. 

 Model averaging/ensemble: GAMs, GBMs, Random Forest were 
combined in an ensemble 

Model workflow We used General Linear Models, General Additive Models, Random 
Forests, and Gradient boosting to predict species richness as a response 
variable of environmental predictors selected based on univariate 
predictive performance, limited collinearity (absolute pairwise Pearson 
correlation coefficients <0.7), and ecological relevance. We estimated the 
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role of anthropogenic factors using distance from infrastructure derived 
from Open Street Maps as a proxy for human influence. 
For each model, we tested three options: using environmental only set of 
predictors, actual distance to infrastructure raster and a hypothetical zero 
human influence raster (distance to infrastructure was set to maximum 
value). Predictive model performance was assessed using a 5-fold cross-
validation 

Software  Software: R (version 4.1.2, R Core Team, 2021), QGIS (version 3.12, 
https://www.qgis.org/) 

o R-Packages used: ecospat (Broennimann et al., 2014),  
gam (Hastie, 2020), gbm (Greenwell et al., 2020), 
randomForest (Liaw and Wiener, 2002) and raster (Bivand 
et al. 2021). 

 Data availability: 
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-
WriskoaRUuoVdeU  

 Code availability: 
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-
WriskoaRUuoVdeU   

DATA 

Biodiversity data  Taxonomic reference system: We used Pan-Arctic species list 
(PASL) (Raynolds et al., 2013) as taxonomic reference 

 Ecological level: community-level 

 Biodiversity data source: We used Russian Vegetation Archive 
data (Ermokhina et al., 2022) for identifying community-level 
species richness 

 Sampling design: Data was collected using standard Braun-
Blanquet method according to Arctic Vegetation Archive protocol 
(Walker et al., 2013, 2016, 2018). Sample size varied from 16 to 
100 m according to AVA protocol for tundra communities. Plots 
were classified the plots to small (less than 100m2) and large 
(100m2) to correct for the potential effect of plot size on species 
richness. 

 Sample size: 1438 plots 

Data partitioning 5-fold cross-validation 

Predictor variables  Predictor variables: 
o Climatic: 19 bioclimatic variables (seasonal and annual 

statistics of temperature and precipitation), mean ground 
temperature, annual statistics of climate moisture index, 
total cloud cover, potential evapotranspiration, site water 
balance, and growing degree days, mean wind speed 

o Paleoclimatic: mean annual temperature, annual 
precipitation sum, paleo-elevation, distance to land ice, 
maximum (latest) year in time-series where the location 
was covered by land ice. 

https://www.qgis.org/
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-WriskoaRUuoVdeU
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-WriskoaRUuoVdeU
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-WriskoaRUuoVdeU
https://datadryad.org/stash/share/bFWEuics4IXhXfj2xvo4or1sUYa-WriskoaRUuoVdeU
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o Topography: altitude (incl. standard deviation of altitude), 
slope, aspect, topographic position index, terrain wetness 
index and solar radiation  

o Vegetation: Mean normalized difference vegetation index 
(NDVI) was tested but omitted during variable selection 

o Anthropogenic impact: Distance to infrastructure and used 
as a proxy for anthropogenic impact, combining industrial 
activities and the resulting increase of reindeer pressure 
into one single predictor 

 Data sources:  
o Bioclimatic variables: CHELSA (Karger et al., 2017), and 

CHELSA-BIOCLIM+ (Brun et al., 2022). 
o Mean ground temperature (2000-2016): ESA Global 

permafrost project (Obu, et al., 2019) 
o Paleoclimate: CHELSA-TraCE21k dataset (Karger et al., 

2021) 
o Terrain wetness index (Marthews et al., 2015) 
o Mean wind speed: Global Wind Atlas 

(https://globalwindatlas.info/en )   
o Topography: ArcticDEM based (Morin et al., 2016; Porter 

et al., 2018) 
o Vegetation: NDVI for the period July-August 2019-2020 as 

observed by MODIS (https://modis.gsfc.nasa.gov/)   
o Human impact: derived from Open Street Maps 

(https://www.openstreetmap.org/) 

 Data processing: slope, aspect and solar radiation as well as 
distance to infrastructure were calculated in QGIS (version 3.12, 
https://www.qgis.org/en/site/) 

MODEL 

Variable pre-selection  The selection was based on univariate predictive performance 
(>5% explained deviance), limited collinearity (absolute pairwise 
Pearson correlation coefficients <0.7), and ecological relevance. 

 The final 14 variables include mean ground temperature, potential 
evapotranspiration (min), mean temperature of driest quarter, 
climate moisture index (max), distance to infrastructure, growing 
degree days above 5°C, climate moisture index (range), (log 
transformed) slope, cloud area fraction and mean wind speed. 

Multicollinearity  We conducted Spearman’s rank correlations between all pairs of 
variables and dropped three variables that were highly correlated 
with others (Spearman’s |ρ| < 0.7) to reduce the risk of overfitting 
during model calibration.  

 For predictor variables having Spearman’s rank correlation close to 
threshold (± 0.2), and similar predictive power (±3% explained 
deviance) the selection was based on ecological relevance 

Model settings  For GLMs, we defined a linear and a quadratic term for each 
predictor.  

 For GAMs, we used smooth terms with four degrees of freedom.  

https://globalwindatlas.info/en
https://modis.gsfc.nasa.gov/
https://www.openstreetmap.org/
https://www.qgis.org/en/site/
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 For GBMs, we set the number of trees to 80, the minimum number 
of data points per leaf to 10, learning rate equals to 0.1 and the 
distribution equals ‘poisson’ 

 For Random Forests we fitted 500 regression trees, considering 
three predictors for each tree 

Model estimates We used Spearman correlation and mean absolute error to estimate model 
performance. Only models with Spearman correlation > 0.55 were included 
into resulting ensemble. 

Model averaging/ 

ensembles 
We calculated the mean species richness from three best-performing 
models (Spearman correlation > 0.55) as consensus method for combining 
the output of different single-models. 

Non-independent 
analyses 

 

ASSESSMENT 

Performance statistics Performance statistics estimated on validation data (from data 
partitioning). Agreement between observed and predicted species richness 
was assessed using Spearman correlation coefficients and mean absolute 
error (MAE). 

Plausibility checks Maps of modelled predictions were checked by experts 

PREDICTION 

Prediction output Prediction unit: species numbers 

Uncertainty 
quantification 

We calculated model disagreement as the range between maximum and 
minimum predicted species richness in each pixel as measure of 
uncertainty. 
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