REFERENCES
(1) Li, Z. J., Wang, Y. Z., Wang, L. R., Shi, T. Q., Sun, X. M., &
Huang, H. (2021) Advanced strategies for the synthesis of terpenoids inYarrowia Lipolytica . Journal of Agricultural and Food
Chemistry, 69 , 2367-2381.
(2) Shi, T., Li, Y., Zhu, L., Tong, Y., Yang, J., Fang, Y., Wang, M.,
Zhang, J., Jiang, Y., & Yang, S. (2021) Engineering the oleaginous
yeast Yarrowia lipolytica for β-farnesene overproduction.Biotechnology Journal, 16 , e2100097.
(3) Schempp, F. M., Drummond, L., Buchhaupt, M., & Schrader, J. (2018)
Microbial cell factories for the production of terpenoid flavor and
fragrance compounds. Journal of Agricultural and Food Chemistry,66 , 2247-2258.
(4) Yang, J., Zhao, G., Sun, Y., Zheng, Y., Jiang, X., Liu, W., & Xian,
M. (2012) Bio-isoprene production using exogenous MVA pathway and
isoprene synthase in Escherichia coli . Bioresource
Technology, 104 , 642-647.
(5) Clomburg, J. M., Qian, S., Tan, Z., Cheong, S., & Gonzalez, R.
(2019) The isoprenoid alcohol pathway, a synthetic route for isoprenoid
biosynthesis. PNAS, 116 , 12810-12815.
(6) Ma, Y., Zu, Y., Huang, S., & Stephanopoulos, G. (2023) Engineering
a universal and Efficient platform for terpenoid synthesis in yeast.PNAS, 120 , e2207680120.
(7) Luo, Z., Liu, N., Lazar, Z., Chatzivasileiou, A., Ward, V., Chen,
J., & Zhou, J., Stephanopoulos, G. (2020) Enhancing isoprenoid
synthesis in Yarrowia Lipolytica by expressing the isopentenol
utilization pathway and modulating intracellular hydrophobicity.Metabolic Engineering, 61 , 344-351.
(8) Ma, X., Liang, H., Pan, Q., Prather, K. L. J., Sinskey, A. J.,
Stephanopoulos, G., & Zhou, K. (2022) Optimization of the isopentenol
utilization pathway for isoprenoid synthesis in Escherichia coli .Journal of Agricultural and Food Chemistry, 70 , 3512-3520.
(9) Rouches V, M., Xu, Y., Cortes, L. B. G., & Lambert, G. (2022) A
plasmid system with tunable copy number. Nature Communication,13 , 3908.
(10) Zhu, F., Lu, L., Fu, S., Zhong, X., Hu, M., Deng, Z., & Liu, T.
(2015) Targeted engineering and scale up of lycopene overproduction inEscherichia coli . Process Biochemistry, 50 ,
341-346.
(11) Park, S. Y., Binkley, R. M., Kim, W. J., Lee, M. H., & Lee, S. Y.
(2018) Metabolic engineering of Escherichia coli for high-level
astaxanthin production with high productivity. Metabolic
Engineering, 49 , 105-115.
(12) Kim, S. K., Kim, H., Woo, S. G., Kim, T. H., Rha, E., Kwon, K. K.,
Lee, H., Lee, S.G., & Lee, D.H. (2022) CRISPRi-based programmable logic
inverter cascade for antibiotic-free selection and maintenance of
multiple plasmids. Nucleic Acids Research, 50 , 13155-13171.
(13) Wei, Y., Mohsin, A., Hong, Q., Guo, M., & Fang, H. (2018) Enhanced
production of biosynthesized lycopene via heterogenous MVA pathway based
on chromosomal multiple position integration strategy plus plasmid
systems in Escherichia coli . Bioresource Technology,250, 382-389.
(14) Hussain, M. H., Hong, Q., Zaman, W. Q., Mohsin, A., Wei, Y. L.,
Zhang, N., Fang, H. Q., Wang, Z. J., Hang, H. F., Zhuang, Y. P., & Guo,
M. J. (2021) Rationally optimized generation of integratedEscherichia coli with stable and high yield lycopene biosynthesis
from heterologous mevalonate (MVA) and lycopene expression pathways.Synthetic and Systems Biotechnology, 6 , 85-94.
(15) Vo, P. L. H., Ronda, C., Klompe, S. E., Chen, E. E., Acree, C.,
Wang, H. H., & Sternberg, S. H. (2021) CRISPR RNA-guided integrases for
high-efficiency, multiplexed bacterial genome engineering. Nature
Biotechnology, 39 , 480-489.
(16) Vento, J. M., Crook, N., & Beisel, C. L. (2019) Barriers to genome
editing with CRISPR in bacteria. Journal of Industrial
Microbiology & Biotechnology, 46 , 1327-1341.
(17) Zhang, Y.W., Sun, X.M., Wang, Q.Z., Xu, J.Q., Dong, F., Yang, S.Q.,
Yang, J.W., Zhang, Z.X., Qian, Y., Chen, J., Zhang, J., Liu, Y.M., Tao,
R.S., Jiang, Y., Yang, J.J., & Yang, S. (2020) Multicopy chromosomal
integration using CRISPR-associated transposases. ACS Synthetic
Biology, 9 , 1998-2008.
(18) Yang, S.Q., Zhang, Y.W., Xu, J.Q., Zhang, J., Zhang, J.Z., Yang,
J.J., Jiang, Y., & Yang, S. (2021) Orthogonal CRISPR-associated
transposases for parallel and multiplexed chromosomal integration.Nucleic Acids Research, 49 , 10192-10202.
(19) Li, D., Li, Y., Xu, J. Y., Li, Q. Y., Tang, J. L., Jia, S. R., Bi,
C. H., Dai, Z. B., Zhu, X. N., & Zhang, X. L. (2020) Engineering CrtW
and CrtZ for improving biosynthesis of astaxanthin in Escherichia
coli . Chinese Journal of Natural Medicines. 18 , 666-676.
(20) Sri Wahyu Effendi, S., Lin, J.Y., & Ng, I.S. (2022) Simultaneous
carbon dioxide sequestration and utilization for cadaverine production
using dual promoters in engineered Escherichia coli strains.Bioresource Technology, 363 , 127980.
(21) Jervis, A. J., Carbonell, P., Taylor, S., Sung, R., Dunstan, M. S.,
Robinson, C. J., Breitling, R., Takano, E., & Scrutton, N. S. (2019)
SelProm: a queryable and predictive expression vector selection tool forEscherichia coli . ACS Synthetic Biology, 8 ,
1478-1483.
(22) Jin, L. Y., Nawab, S., Xia, M. L., Ma, X. Y., & Huo, Y. X. (2019)
Context-dependency of synthetic minimal promoters in driving gene
expression: a case study. Microbial Biotechnology , 12 ,
1476-1486.
(23) Du, F., Liu, Y. Q.; Xu, Y. S.; Li, Z. J.; Wang, Y. Z.; Zhang, Z.
X.; & Sun, X. M. (2021) Regulating the T7 RNA polymerase expression inE. coli BL21 (DE3) to provide more host options for recombinant
protein production. Microbial Cell Factory, 20 , 189.
(24) Cao, X., Yu, W., Chen, Y., Yang, S., Zhao, Z. K., Nielsen, J.,
Luan, H., & Zhou, Y. J. (2023) Engineering yeast for high-level
production of diterpenoid sclareol. Metabolic Engineering, 75 ,
19-28.
(25) Pan, Q., Ma, X., Liang, H., Liu, Y., Zhou, Y., Stephanopoulos, G.,
& Zhou, K. (2023) Biosynthesis of geranate via isopentenol utilization
pathway in Escherichia coli . Biotechnology Bioengineering,120 , 230-238.
(26) Rad, S. A., Zahiri, H. S., Noghabi, K. A., Rajaei, S., Heidari, R.,
& Mojallali, L. (2012) Type 2 IDI performs better than type 1 for
improving lycopene production in metabolically engineered E. colistrains. World Journal of Microbiology & Biotechnology,28 , 313-321.
(27) Seo, S. W., Yang, J.S., Kim, I., Yang, J., Min, B. E., Kim, S., &
Jung, G. Y. (2013) Predictive design of mRNA translation initiation
region to control prokaryotic translation efficiency. Metabolic
Engineering, 15 , 67-74.
(28) Ma, H., Zhao, Y., Huang, W., Zhang, L., Wu, F., Ye, J., & Chen,
G.Q. (2020) Rational flux-tuning of Halomonas Bluephagenesis for
co-production of bioplastic PHB and ectoine. Nature
Communication, 11 , 3313.
(29) Ribeiro, V. T., Asevedo, E. A., Costa de Paiva Vasconcelos, L. T.,
Oliveira Filho, M. A., de Araujo, J. S., de Macedo, G. R., de Sousa
Junior, F. C., & dos Santos, E. S. (2019) Evaluation of induction
conditions for plasmid pQE-30 stability and 503 antigen ofLeishmania i. Chagasi expression in E. coli M15.Applied Microbial Biotechnology. 103 , 6495-6504.
(30) Klepsch, M. M., Persson, J. O., & de Gier, J.W. L. (2011)
Consequences of the overexpression of a eukaryotic membrane protein, the
human KDEL receptor, in Escherichia coli . Journal of
Molecular Biology, 407 , 532-542.
(31) Schmidt, C. M., Shis, D. L., Nguyen-Huu, T. D., & Bennett, M. R.
(2012) Stable maintenance of multiple plasmids in E. coli using a
single selective marker. ACS Synthetic Biology, 1 ,
445-450.
(32) Campbell, K., Xia, J., & Nielsen, J. The impact of systems biology
on bioprocessing. (2017) Trends in Biotechnology, 35 ,
1156-1168.
(33) Bryant, J. A., Sellars, L. E., Busby, S. J. W., & Lee, D. J.
(2014) Chromosome position effects on gene expression inEscherichia coli K-12. Nucleic Acids Research, 42 ,
11383-11392.