References
Akai, N., Rahok, S. A., Inoue, K., & Ozaki, K. (2014). Development of
magnetic navigation method based on distributed control system using
magnetic and geometric landmarks. ROBOMECH Journal, 1(1), 1-11.
Ataer-Cansizoglu, E., Taguchi, Y., & Ramalingam, S. (2016, May).
Pinpoint SLAM: A hybrid of 2D and 3D simultaneous localization and
mapping for RGB-D sensors. In 2016 IEEE international conference on
robotics and automation (ICRA) (pp. 1300-1307). IEEE.
Bagagiolo, G., Matranga, G., Cavallo, E., & Pampuro, N. (2022).
Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected
Cropping Systems—A Review. Sustainability, 14(11), 6436.
Bai, Y., Zhang, B., Xu, N., Zhou, J., Shi, J., & Diao, Z. (2023).
Vision-based navigation and guidance for agricultural autonomous
vehicles and robots: A review. Computers and Electronics in Agriculture,
205, 107584.
Balaso, S. D., Arima, S., Ueka, Y., Kono, M., Nishina, H., Kenji, H.,
… & Takahashi, N. (2013). Development of a multi-operation system for
intelligent greenhouses. IFAC Proceedings Volumes, 46(4), 287-292.
Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., …
& Bate, A. (2016). Vision‐based obstacle detection and navigation for
an agricultural robot. Journal of field robotics, 33(8), 1107-1130.
Blochliger, F., Fehr, M., Dymczyk, M., Schneider, T., & Siegwart, R.
(2018, May). Topomap: Topological mapping and navigation based on visual
slam maps. In 2018 IEEE International Conference on Robotics and
Automation (ICRA) (pp. 3818-3825). IEEE.
Buniyamin, N., Ngah, W. W., Sariff, N., & Mohamad, Z. (2011). A simple
local path planning algorithm for autonomous mobile robots.
International journal of systems applications, Engineering &
development, 5(2), 151-159.
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019).
The future challenges of food and agriculture: An integrated analysis of
trends and solutions. Sustainability, 11(1), 222.
Campbell, S., O’Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., &
Walsh, J. (2020, February). Path planning techniques for mobile robots a
review. In 2020 6th International Conference on Mechatronics and
Robotics Engineering (ICMRE) (pp. 12-16). IEEE.
Castro, G. G. D., Berger, G. S., Cantieri, A., Teixeira, M., Lima, J.,
Pereira, A. I., & Pinto, M. F. (2023). Adaptive Path Planning for
Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in
an Agriculture Dynamic Environment UAVs. Agriculture, 13(2), 354.
Conner, D. C., & Willis, J. (2017, March). Flexible Navigation: Finite
state machine-based integrated navigation and control for ROS enabled
robots. In SoutheastCon 2017 (pp. 1-8). IEEE.
Darweesh, H., Takeuchi, E., Takeda, K., Ninomiya, Y., Sujiwo, A.,
Morales, L. Y., … & Kato, S. (2017). Open source integrated planner
for autonomous navigation in highly dynamic environments. Journal of
Robotics and Mechatronics, 29(4), 668-684.
Erfani, S., Jafari, A., & Hajiahmad, A. (2019). Comparison of two data
fusion methods for localization of wheeled mobile robot in farm
conditions. Artificial Intelligence in Agriculture, 1, 48-55.
Gao, X., Li, J., Fan, L., Zhou, Q., Yin, K., Wang, J., … & Wang, Z.
(2018). Review of wheeled mobile robots’ navigation problems and
application prospects in agriculture. Ieee Access, 6, 49248-49268.
Gong, L., Wang, W., Wang, T., & Liu, C. (2022). Robotic harvesting of
the occluded fruits with a precise shape and position reconstruction
approach. Journal of Field Robotics, 39(1), 69-84.
Harik, E. H. C., & Korsaeth, A. (2018). Combining hector slam and
artificial potential field for autonomous navigation inside a
greenhouse. Robotics, 7(2), 22.
Kalogeiton, V. S., Ioannidis, K., Sirakoulis, G. C., & Kosmatopoulos,
E. B. (2019). Real-time active SLAM and obstacle avoidance for an
autonomous robot based on stereo vision. Cybernetics and Systems, 50(3),
239-260.
Khan, M. U., Zaidi, S. A. A., Ishtiaq, A., Bukhari, S. U. R., Samer, S.,
& Farman, A. (2021, July). A comparative survey of lidar-slam and lidar
based sensor technologies. In 2021 Mohammad Ali Jinnah University
International Conference on Computing (MAJICC) (pp. 1-8). IEEE.
Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual SLAM
for indoor livestock and farming using a small drone with a monocular
camera: A feasibility study. Drones, 5(2), 41.
Lu, Y., Xue, Z., Xia, G. S., & Zhang, L. (2018). A survey on
vision-based UAV navigation. Geo-spatial information science, 21(1),
21-32.
Lv, J., Xu, H., Xu, L., Zou, L., Rong, H., Yang, B., … & Ma, Z.
(2022). Recognition of fruits and vegetables with similar‐color
background in natural environment: A survey. Journal of Field Robotics,
39(6), 888-904.
Matsuzaki, S., Masuzawa, H., Miura, J., & Oishi, S. (2018, October). 3D
semantic mapping in greenhouses for agricultural mobile robots with
robust object recognition using robots’ trajectory. In 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (pp.
357-362). IEEE.
Mosalanejad, H., Minaei, S., Borghei, A., & Farzaneh, B. (2020).
Evaluation of navigation system of a robot designed for greenhouse
spraying. International Journal on Smart Sensing and Intelligent
Systems, 13(1), 1.
Plessen, M. G. (2019). Coupling of crop assignment and vehicle routing
for harvest planning in agriculture. Artificial Intelligence in
Agriculture, 2, 99-109.
Ren, Z., Wang, L., & Bi, L. (2019). Robust GICP-based 3D LiDAR SLAM for
underground mining environment. Sensors, 19(13), 2915.
Sammons, P. J., Furukawa, T., & Bulgin, A. (2005, December). Autonomous
pesticide spraying robot for use in a greenhouse. In Australian
Conference on Robotics and Automation (Vol. 1, No. 9, pp. 1-9).
Canberra, Australia: Commonwealth Scientific and Industrial Research
Organisation.
Santos L C, Santos F N, Pires E J S, et al. Path planning for ground
robots in agriculture: A short review[C]//2020 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE,
2020: 61-66.
Shalal, N., Low, T., McCarthy, C., & Hancock, N. (2013). A review of
autonomous navigation systems in agricultural environments. SEAg 2013:
Innovative Agricultural Technologies for a Sustainable Future.
Shan, T., & Englot, B. (2018, October). Lego-loam: Lightweight and
ground-optimized lidar odometry and mapping on variable terrain. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 4758-4765). IEEE.
Shi, Y., Wang, H., Yang, T., Liu, L., & Cui, Y. (2020). Integrated
Navigation by a Greenhouse Robot Based on an Odometer/Lidar.
Instrumentation, Mesures, Métrologies, 19(2).
Simon, D. (2001). Kalman filtering. Embedded systems programming, 14(6),
72-79.
Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autonomous
strawberry‐harvesting robot: Design, development, integration, and field
evaluation. Journal of Field Robotics, 37(2), 202-224.
Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autonomous
strawberry‐harvesting robot: Design, development, integration, and field
evaluation. Journal of Field Robotics, 37(2), 202-224.
Yan, Y., Zhang, B., Zhou, J., Zhang, Y., & Liu, X. A. (2022). Real-Time
Localization and Mapping Utilizing Multi-Sensor Fusion and
Visual–IMU–Wheel Odometry for Agricultural Robots in Unstructured,
Dynamic and GPS-Denied Greenhouse Environments. Agronomy, 12(8), 1740.
Yang, W., Gong, C., Luo, X., Zhong, Y., Cui, E., Hu, J., … & Chen, W.
(2023). Robotic Path Planning for Rice Seeding in Hilly Terraced Fields.
Agronomy, 13(2), 380.
Zangina, U., Buyamin, S., Abidin, M. S. Z., & Mahmud, M. S. A. (2021).
Agricultural rout planning with variable rate pesticide application in a
greenhouse environment. Alexandria Engineering Journal, 60(3),
3007-3020.
Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry
and mapping. Autonomous Robots, 41, 401-416.
Zhang, X., Guo, Y., Yang, J., Li, D., Wang, Y., & Zhao, R. (2022).
Many-objective evolutionary algorithm based agricultural mobile robot
route planning. Computers and Electronics in Agriculture, 200, 107274.
Zhou, L., Koppel, D., & Kaess, M. (2021). LiDAR SLAM with plane
adjustment for indoor environment. IEEE Robotics and Automation Letters,
6(4), 7073-7080.