References
Akai, N., Rahok, S. A., Inoue, K., & Ozaki, K. (2014). Development of magnetic navigation method based on distributed control system using magnetic and geometric landmarks. ROBOMECH Journal, 1(1), 1-11.
Ataer-Cansizoglu, E., Taguchi, Y., & Ramalingam, S. (2016, May). Pinpoint SLAM: A hybrid of 2D and 3D simultaneous localization and mapping for RGB-D sensors. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 1300-1307). IEEE.
Bagagiolo, G., Matranga, G., Cavallo, E., & Pampuro, N. (2022). Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected Cropping Systems—A Review. Sustainability, 14(11), 6436.
Bai, Y., Zhang, B., Xu, N., Zhou, J., Shi, J., & Diao, Z. (2023). Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Computers and Electronics in Agriculture, 205, 107584.
Balaso, S. D., Arima, S., Ueka, Y., Kono, M., Nishina, H., Kenji, H., … & Takahashi, N. (2013). Development of a multi-operation system for intelligent greenhouses. IFAC Proceedings Volumes, 46(4), 287-292.
Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., … & Bate, A. (2016). Vision‐based obstacle detection and navigation for an agricultural robot. Journal of field robotics, 33(8), 1107-1130.
Blochliger, F., Fehr, M., Dymczyk, M., Schneider, T., & Siegwart, R. (2018, May). Topomap: Topological mapping and navigation based on visual slam maps. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3818-3825). IEEE.
Buniyamin, N., Ngah, W. W., Sariff, N., & Mohamad, Z. (2011). A simple local path planning algorithm for autonomous mobile robots. International journal of systems applications, Engineering & development, 5(2), 151-159.
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11(1), 222.
Campbell, S., O’Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., & Walsh, J. (2020, February). Path planning techniques for mobile robots a review. In 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE) (pp. 12-16). IEEE.
Castro, G. G. D., Berger, G. S., Cantieri, A., Teixeira, M., Lima, J., Pereira, A. I., & Pinto, M. F. (2023). Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs. Agriculture, 13(2), 354.
Conner, D. C., & Willis, J. (2017, March). Flexible Navigation: Finite state machine-based integrated navigation and control for ROS enabled robots. In SoutheastCon 2017 (pp. 1-8). IEEE.
Darweesh, H., Takeuchi, E., Takeda, K., Ninomiya, Y., Sujiwo, A., Morales, L. Y., … & Kato, S. (2017). Open source integrated planner for autonomous navigation in highly dynamic environments. Journal of Robotics and Mechatronics, 29(4), 668-684.
Erfani, S., Jafari, A., & Hajiahmad, A. (2019). Comparison of two data fusion methods for localization of wheeled mobile robot in farm conditions. Artificial Intelligence in Agriculture, 1, 48-55.
Gao, X., Li, J., Fan, L., Zhou, Q., Yin, K., Wang, J., … & Wang, Z. (2018). Review of wheeled mobile robots’ navigation problems and application prospects in agriculture. Ieee Access, 6, 49248-49268.
Gong, L., Wang, W., Wang, T., & Liu, C. (2022). Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach. Journal of Field Robotics, 39(1), 69-84.
Harik, E. H. C., & Korsaeth, A. (2018). Combining hector slam and artificial potential field for autonomous navigation inside a greenhouse. Robotics, 7(2), 22.
Kalogeiton, V. S., Ioannidis, K., Sirakoulis, G. C., & Kosmatopoulos, E. B. (2019). Real-time active SLAM and obstacle avoidance for an autonomous robot based on stereo vision. Cybernetics and Systems, 50(3), 239-260.
Khan, M. U., Zaidi, S. A. A., Ishtiaq, A., Bukhari, S. U. R., Samer, S., & Farman, A. (2021, July). A comparative survey of lidar-slam and lidar based sensor technologies. In 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC) (pp. 1-8). IEEE.
Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study. Drones, 5(2), 41.
Lu, Y., Xue, Z., Xia, G. S., & Zhang, L. (2018). A survey on vision-based UAV navigation. Geo-spatial information science, 21(1), 21-32.
Lv, J., Xu, H., Xu, L., Zou, L., Rong, H., Yang, B., … & Ma, Z. (2022). Recognition of fruits and vegetables with similar‐color background in natural environment: A survey. Journal of Field Robotics, 39(6), 888-904.
Matsuzaki, S., Masuzawa, H., Miura, J., & Oishi, S. (2018, October). 3D semantic mapping in greenhouses for agricultural mobile robots with robust object recognition using robots’ trajectory. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 357-362). IEEE.
Mosalanejad, H., Minaei, S., Borghei, A., & Farzaneh, B. (2020). Evaluation of navigation system of a robot designed for greenhouse spraying. International Journal on Smart Sensing and Intelligent Systems, 13(1), 1.
Plessen, M. G. (2019). Coupling of crop assignment and vehicle routing for harvest planning in agriculture. Artificial Intelligence in Agriculture, 2, 99-109.
Ren, Z., Wang, L., & Bi, L. (2019). Robust GICP-based 3D LiDAR SLAM for underground mining environment. Sensors, 19(13), 2915.
Sammons, P. J., Furukawa, T., & Bulgin, A. (2005, December). Autonomous pesticide spraying robot for use in a greenhouse. In Australian Conference on Robotics and Automation (Vol. 1, No. 9, pp. 1-9). Canberra, Australia: Commonwealth Scientific and Industrial Research Organisation.
Santos L C, Santos F N, Pires E J S, et al. Path planning for ground robots in agriculture: A short review[C]//2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2020: 61-66.
Shalal, N., Low, T., McCarthy, C., & Hancock, N. (2013). A review of autonomous navigation systems in agricultural environments. SEAg 2013: Innovative Agricultural Technologies for a Sustainable Future.
Shan, T., & Englot, B. (2018, October). Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4758-4765). IEEE.
Shi, Y., Wang, H., Yang, T., Liu, L., & Cui, Y. (2020). Integrated Navigation by a Greenhouse Robot Based on an Odometer/Lidar. Instrumentation, Mesures, Métrologies, 19(2).
Simon, D. (2001). Kalman filtering. Embedded systems programming, 14(6), 72-79.
Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autonomous strawberry‐harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 37(2), 202-224.
Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autonomous strawberry‐harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 37(2), 202-224.
Yan, Y., Zhang, B., Zhou, J., Zhang, Y., & Liu, X. A. (2022). Real-Time Localization and Mapping Utilizing Multi-Sensor Fusion and Visual–IMU–Wheel Odometry for Agricultural Robots in Unstructured, Dynamic and GPS-Denied Greenhouse Environments. Agronomy, 12(8), 1740.
Yang, W., Gong, C., Luo, X., Zhong, Y., Cui, E., Hu, J., … & Chen, W. (2023). Robotic Path Planning for Rice Seeding in Hilly Terraced Fields. Agronomy, 13(2), 380.
Zangina, U., Buyamin, S., Abidin, M. S. Z., & Mahmud, M. S. A. (2021). Agricultural rout planning with variable rate pesticide application in a greenhouse environment. Alexandria Engineering Journal, 60(3), 3007-3020.
Zhang, J., & Singh, S. (2017). Low-drift and real-time lidar odometry and mapping. Autonomous Robots, 41, 401-416.
Zhang, X., Guo, Y., Yang, J., Li, D., Wang, Y., & Zhao, R. (2022). Many-objective evolutionary algorithm based agricultural mobile robot route planning. Computers and Electronics in Agriculture, 200, 107274.
Zhou, L., Koppel, D., & Kaess, M. (2021). LiDAR SLAM with plane adjustment for indoor environment. IEEE Robotics and Automation Letters, 6(4), 7073-7080.