References
[1] Duddington, C.L. A new predaceous species of Trichothecium.Transactions of the British Mycological Society . 1948 , 32, 284–287.
[2] Wang, B.B.; Liu, W.; Chen, M.Y.; Li, X.; Han, Y.; Xu, Q.; Sun, L.J.; Xie, D.Q.; Cai, K.Z.; Liu, Y.Z.; Liu, J.L.; Yi, L.X.; Wang, H.; Zhao, M.W.; Li, X.S.; Wu, J.Y.; Yang, J.; Wang, Y.Y. Isolation and characterization of china isolates of Duddingtonia flagrans , a candidate of the nematophagous fungi for biocontrol of animal parasitic nematodes. Journal of Parasitology . 2015 , 101, 476–484.
[3] Wang, B.B.; Zhang, N.; Gong, P.T.; Li, J.H.; Yang, J.; Zhang, H.B.; Zhang, X.C.; Cai, K.Z. Morphological variability, molecular phylogeny, and biological characteristics of the nematophagous fungus Duddingtonia flagrans . Journal of Basic Microbiology . 2019 , 59, 645-657.
[4] Araújo, J.M.; Araújo, J.V.; Braga, F.R., Carvalho, R. O. In vitro predatory activity of nematophagous fungi and after passing through gastrointestinal tract of equine on infective larvae of Strongyloides westeri. Parasitology Research . 2010 , 107, 103–108.
[5] Durand, D.T.; Boshoff, H.M.; Michael, L.M.; Krecek, R.C. Survey of nematophagous fungi in South Africa. Onderstepoort Journal of Veterinary Research . 2005 , 72, 185–187.
[6] Larsen, M.; Wolstrup, J.; Henriksen, S.A.; Grønvold, J., Nansen, P. In vivo passage through calves of nematophagous fungi selected for biocontrol of parasitic nematodes. Journal of Helminthology .1992 , 66(2): 137–141.
[7] Wang, B.B.; Wang, F.H.; Xu, Q.; Wang, K.Y.; Xue, Y.J.; Ren, R.; Zeng, J.Q.; Liu, Y.; Zhang, H.Y.; Wang, H.Y.; Cai, B.; Cai, K.Z.; Cao, X. In vitro and in vivo studies of the native isolates of nematophagous fungi from China against the larvae of trichostrongylides. Journal of Basic Microbiology . 2017 , 57(3), 265.
[8] Tavela, A.O.; Araújo, J.V.; Braga, F.R.; Araujo, J.M.; Magalhães, L.Q.; Silveira, W.F.; Borges, L.A. In vitro association of nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34) and Pochonia chlamydosporia (VC1) to control horse cyathostomin (Nematoda: Strongylidae). Biocontrol Science and Technology . 2012 , 22, 607–610.
[9] Braga, F.R.; Araújo, J.V. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology . 2014 , 98, 71–82.
[10] Assis, R.C.L.; Luns, F.D.; Araújo, J.V.; Braga, F.R.; Assis, R.L.; Marcelino, J.L.; Freitas, P.C.; Andrade, M.A. S. Comparison between the action of nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium in the biological control of bovine gastrointestinal nematodiasis in tropical southeastern Brazil. Veterinary Parasitology . 2013 ,193(1-3), 134-140.
[11] Liu, X.Y.; Chang, F.F.; Zhao, T.Y.; Huang, H.Y.; Li, F.D.; Wang, F.; Wang, B.B.; Wang, F.H.; Liu, Q.; Luo, Q.H.; Cai, K.Z.; Zhong, R.M. Biological control of sheep gastrointestinal nematode in three feeding systems in Northern China by using powder drug with nematophagous fungi. Biocontrol Science and Technology2020 , 30(7), 701-715.
[12] Duan, Z.B.; Gao, Q.; Lv, D.D.; Shi, S.H.; BUTT Tariq M.; Wang, C.S. Appressorial differentiation and its association with cAMP in the insect pathogenic fungus Metarhizium anisopliae. Mycosystema .2009 , 28(5),712-717.
[13] Fillinger, S.; Chaveroche, M.K.; Shimizu, K.; Keller, N.; d’Enfert, C. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Molecular microbiology . 2002 , 44(4), 1001-1016.
[14] Takano, Y.; Komeda, K.; Kojima, K.; Okuno, T. Proper regulation of cyclicAMP-dependent protein kinase is required for growth, conidiation, andappressorium function in the anthracnose fungusColletotrichum lagenarium . Molecular Plant-Microbe Interactions . 2001 , (14), 1149-1157.
[15] Adachi, K.; Hamer, J.E. Divergent cAMP Signaling pathways regulate growth andpathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell . 2002 , (10), 1361-1373.
[16] Priyatno, T.P.; Abu Bakar, F.D.; Kamaruddin, N.; Mahadi, N.M.; Abdul Murad, A.M. Inactivation of the catalytic subunit of camp-dependent protein kinase a causes delayed appressorium formation and reduced pathogenicity of Colletotrichum gloeosporioides .The Scientific World Journal. 2012 , 1-12.
[17] Barhoom, S.; Sharon, A. cAMP regulation of ”pathogenic” and ”saprophytic” fungal spore germination. Fungal Genetics and Biology . 2004 , 41(3), 317-326.
[18] Chen, A.; Ju, Z.; Wang, J.; Wang, J.; Wang, H.; Wu, J.; Yin, Y.; Zhao, Y.; Ma, Z.; Chen, Y. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signalling pathways. Environmental Microbiology .2020 , 22(12), 5109-5124.
[19] Jiang, C.; Zhang, C.; Wu, C.; Sun; P.; Hou, R.; Liu, H.; Wang, C.; Xu, J.R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology . 2016 , 18(11), 3689-3701.
[20] Hou, R.; Jiang, C.; Zheng, Q.; Wang, C.F.; Xu, J.R. The area transcription factor mediates the regulation of deoxynivalenol (don) synthesis by ammonium and cyclic adenosine monophosphate (camp) signalling in fusarium graminearum. Molecular Plant Pathology, 2015 ,16(9), 987-999.
[21] Fuller, K.K.; Rhodes, J.C. Protein kinase A and fungal virulence: A sinister side to a conserved nutrient sensing pathway.Virulence . 2012 , 3, 109–121.
[22] Hogan, D.A.; Sundstrom, P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiology .2009 , 4, 1263–1270.
[23] Kozubowski, L.; Lee, S.C.; Heitman, J. Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiology .2009 , 11, 370–380.
[24] McDonough, K.A.; Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: From signal to sword. Nat. Rev. Microbiol.2012 , 10, 27–38.
[25] Liebmann, B.; Müller, M.; Braun, A.; Brakhage, A.A. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus . Infection and Immunity . 2004 , 72, 5193–5203.
[26] D’Souza, C.A.; Alspaugh, J.A.; Yue, C.; Harashima, T.; Cox, G.M.; Perfect, J.R.; Heitman, J. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans.Molecular Cell Biology . 2001 , 21, 3179–3191.
[27] Choi, J.; Vogl, A.W.; Kronstad, J.W. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans.Molecular Microbiology . 2012 , 85, 700–715.
[28] Lin, C.J.; Chen, Y.L. Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis.Journal of Fungi . 2018 , 4(2), 68.
[29] Li, Y.; Shan, M.; Li, S.; Wang, Y.; Yang, H.; Chen, Y.; Gu, B.; Zhu, Z. Teasaponin suppresses Candida albicans filamentation by reducing the level of intracellular cAMP. Annals of Translational Medicine . 2020 , 8(5):175.
[30] Feofilova, E.P.; Ivashechkin, A.A.; Alekhin, A.I.; Sergeeva, IaÉ. Fungal spores: dormancy, germination, chemical composition, and role in biotechnology.Applied Biochemistry and Microbiology . 2012 , 48, 1-11.
[31] Wang, N.; Ren, Z.H.; Deng, L.W.; Mao, Y.; Chen, J.F.; Liu, E.M. Optimization extraction methods of polysaccharide of chlamydospores wall in Ustiloginoidea virens. Microbiology China . 2011 , 38(9), 1412-1417. (in Chinese)
[32] Hatanaka, M.; Shimoda, C. The cyclic AMP/PKA signal pathway is required for initiation of spore germination in Schizosaccharomyces pombe. Yeast . 2001 , 18, 207–217.
[33] Xue, Y.; Batlle, M.; Hirsch, J.P. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras independent pathway. EMBO Journal .1998 , 17, 1996–2007.
[34] Påhlman, A.K.; Granath, K.; Ansell, R.; Hohmann, S.; Adler, L. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. Journal of Biological Chemistry . 2001 , 276(5), 3555-3563.
[35] Gancedo, J.M. Yeast carbon catabolite repression.Microbiology and Molecular Biology Reviews . 1998 , 62, 334-361.
[36] Nir, Osherov, Gregory, S. May The molecular mechanisms of conidial germination. FEMS Microbiology Letters . 2001 , 199, 153-160
[37] Thines, E.; Weber, R.W.S.; Talbot, N.J. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea . Plant Cell . 2000 , 12, 1703–1718.
[38] Lee, N.; D’Souza, C.A.; Kronstad, J.W. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annual review of phytopathology . 2003 , 41(1), 399-427.
[39] Li X.J.; Li, Y.; Ren, Z. H.; Yang L.; Chen, J.F.; Hong, D.D.; Liu, S.Q.; Zhou, X.Y.; Liu, M.J.; Liu, E.M. Studies on the Correlation between Germinationand cAMP Content of Different Color Chlamydospores in Ustiloginoidea virens. Agricultural Science and technology .2016 , 17(3), 694-699.
[40] Virdy, K.J.; Sands, T.W., Kopko, S.H., Es, S.V.; Cotter, D.A. High camp in spores of dictyostelium discoideum: association with spore dormancy and inhibition of germination. Microbiology .1999 , 145 (8), 1883-1890.
[41] Barhoom, S.; Sharon, A. cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination. Fungal Genetics and Biology . 2004 , 41(3), 317-326.
[42] Hegde, Y.; Kolattukudy, P.E. Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea . Physiological and Molecular Plant Pathology . 1998 , 51, 75– 84.
[43] Colombo, S.; Ma, P.; Cauwenberg, L.; Winderickx, J.; Crauwels, M., Teunissen, A., Nauwelaers, D.; Winde, J.H.; Gorwa, M.F.; Colavizza, D.; Thevelein, J.M. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidifification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. Embo Journal . 1998 , 12, 3326 – 3341.
[44] Osherov, N.; May, G. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics .2000 , 155, 647–656.
[45] Su¨sstrunk, U.; Pidoux, J.; Taubert, S.; Ullmann, A.; Thompson, C.J. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor .Molecular Microbiology. 1998 , 30(1), 33–46.
[46] Gersch, D.; Ro¨mer, W.; Kru¨gel, H. Inverse regulation of spore germination and growth by cyclic AMP in Streptomyces hygroscopicus . Experientia . 1979 , 35(6), 749.
[47] Derouaux A, Halici S, Nothaft H, Neutelings T, Moutzourelis G, Dusart, J.; Titgemeyer, F.; Rigali, S. Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. Journal of Bacteriology .2004 , 186, (10), 3282.
[48] Etten, J.L.V.; Freer, S.N.; Mccune, B.K. Presence of a major (storage?) protein in dormant spores of the fungus botryodiplodia theobromae. Journal of Bacteriology . 1979 , 138(2), 650.
[49] Setlow, P. Purification and characterization of additional low-molecular-weight basic proteins degraded during germination of Bacillus megaterium spores. Journal of Bacteriology .1978 , 136, 331-340.
[50] Setlow, P.E.T.E.R.; Primus, G.R.A.C.E. Protein degradation and amino acid metabolism during germination of Bacillus megaterium spores. Spores VI , 1975 , 451-457.
Figure 1 Standard curve measured by cAMP
Figure 2 cAMP content in dormant and non-dormant chlamydospores. (A) SDH035; (B) DH055
Figure 3 Standard curve of protein concentration
Figure 4 Protein content in dormant and non-dormant chlamydospores.
(A) DH055 spore protein content; (B) SDH035 spore protein content