References
1. Sohrabi, C., et al., World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg, 2020. 76: p. 71-76.
2. Hussain, M., et al., Acute Respiratory Distress Syndrome and COVID-19: A Literature Review. J Inflamm Res, 2021. 14: p. 7225-7242.
3. Horie, S., et al., Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive care medicine, 2020. 46(12): p. 2265-2283.
4. Ranjbar, K., et al., Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC Infectious Diseases, 2021. 21(1): p. 337.
5. Colunga Biancatelli, R.M.L., et al., The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2021. 321(2): p. L477-L484.
6. Ni, W., et al., Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 2020. 24(1): p. 422.
7. Peacock, T.P., et al., The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 2021. 6(7): p. 899-909.
8. Ke, Z., et al., Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020. 588(7838): p. 498-502.
9. Angeli, F., et al., COVID-19, vaccines and deficiency of ACE(2) and other angiotensinases. Closing the loop on the ”Spike effect”. Eur J Intern Med, 2022. 103: p. 23-28.
10. Cognetti, J.S. and B.L. Miller, Monitoring Serum Spike Protein with Disposable Photonic Biosensors Following SARS-CoV-2 Vaccination. Sensors (Basel), 2021. 21(17).
11. Solopov, P.A. COVID-19 Vaccination and Alcohol Consumption: Justification of Risks. Pathogens, 2023. 12, DOI: 10.3390/pathogens12020163.
12. Zhou, Y., et al., A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nature Biotechnology, 2023. 41(1): p. 128-139.
13. Salamoun, J.M., et al., Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org Biomol Chem, 2016. 14(27): p. 6398-402.
14. McQueeney, K.E., et al., Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget, 2017. 9(9): p. 8223-8240.
15. Tang, X., T. Woodward, and S. Amar, A PTP4A3 peptide PIMAP39 modulates TNF-alpha levels and endotoxic shock. Journal of innate immunity, 2010. 2(1): p. 43-55.
16. Zimmerman, M.W., et al., Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility. J Biol Chem, 2014. 289(9): p. 5904-13.
17. Lazo, J.S., et al., Credentialing and Pharmacologically Targeting PTP4A3 Phosphatase as a Molecular Target for Ovarian Cancer. Biomolecules, 2021. 11(7): p. 969.
18. Buzhdygan, T.P., et al., The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis, 2020. 146: p. 105131.
19. Matute-Bello, G., et al., An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol, 2011. 44(5): p. 725-38.
20. Solopov, P., et al., Sex-Related Differences in Murine Models of Chemically Induced Pulmonary Fibrosis. Int J Mol Sci, 2021. 22(11).
21. Colunga Biancatelli, R.M.L., et al., The Heat Shock Protein 90 Inhibitor, AT13387, Protects the Alveolo-Capillary Barrier and Prevents HCl-Induced Chronic Lung Injury and Pulmonary Fibrosis. Cells, 2022. 11(6).
22. Barabutis, N., et al., Protective Mechanism of the Selective Vasopressin V(1A) Receptor Agonist Selepressin against Endothelial Barrier Dysfunction. J Pharmacol Exp Ther, 2020. 375(2): p. 286-295.
23. Narasaraju, T., et al., Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol, 2011. 179(1): p. 199-210.
24. Vainonen, J.P., M. Momeny, and J. Westermarck, Druggable cancer phosphatases. Sci Transl Med, 2021. 13(588).
25. Hardy, S., et al., Physiological and oncogenic roles of the PRL phosphatases. Febs j, 2018. 285(21): p. 3886-3908.
26. Yu, Z.-H. and Z.-Y. Zhang, Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chemical Reviews, 2018. 118(3): p. 1069-1091.
27. Hazeldine, J. and J.M. Lord, Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol, 2021. 12: p. 680134.
28. Camp, J.V. and C.B. Jonsson, A Role for Neutrophils in Viral Respiratory Disease. Front Immunol, 2017. 8: p. 550.
29. Solopov, P.A., R.M.L. Colunga Biancatelli, and J.D. Catravas, Alcohol Increases Lung Angiotensin-Converting Enzyme 2 Expression and Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Subunit 1–Induced Acute Lung Injury in K18-hACE2 Transgenic Mice. The American Journal of Pathology, 2022. 192(7): p. 990-1000.
30. Tecchio, C., A. Micheletti, and M.A. Cassatella, Neutrophil-derived cytokines: facts beyond expression. Front Immunol, 2014. 5: p. 508.
31. Jafarzadeh, A., M. Nemati, and S. Jafarzadeh, Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog, 2021. 154: p. 104836.
32. Salem, F., et al., Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. J Nephrol, 2022. 35(3): p. 735-743.
33. Kandasamy, M., NF-κB signalling as a pharmacological target in COVID-19: potential roles for IKKβ inhibitors. Naunyn Schmiedebergs Arch Pharmacol, 2021. 394(3): p. 561-567.
34. Amin, S., et al., NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect, 2022. 24(1): p. 104913.
35. Colunga Biancatelli, R.M.L., P.A. Solopov, and J.D. Catravas, The Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. Am J Pathol, 2022. 192(6): p. 837-846.
36. Chong, P.S.Y., et al., IL6 Promotes a STAT3-PRL3 Feedforward Loop via SHP2 Repression in Multiple Myeloma. Cancer Res, 2019. 79(18): p. 4679-4688.
37. Ackermann, M., et al., Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine, 2020. 383(2): p. 120-128.
38. Laveneziana, P., L. Sesé, and T. Gille, Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe, 2021. 17(3): p. 210065.
39. Anastasio, F., et al., Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. European Respiratory Journal, 2021. 58(3): p. 2004015.
40. Huang, C., et al., 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet, 2021. 397(10270): p. 220-232.
41. Mo, X., et al., Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. European Respiratory Journal, 2020. 55(6): p. 2001217.
42. Winkler, E.S., et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 2020. 21(11): p. 1327-1335.
43. Chen, W. and J.Y. Pan, Anatomical and Pathological Observation and Analysis of SARS and COVID-19: Microthrombosis Is the Main Cause of Death. Biological Procedures Online, 2021. 23(1): p. 4.
44. Siddiqi, H.K., P. Libby, and P.M. Ridker, COVID-19 - A vascular disease. Trends Cardiovasc Med, 2021. 31(1): p. 1-5.
45. Lei, Y., et al., SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation Research, 2021. 128(9): p. 1323-1326.
46. Saadi, I., et al., Deficiency of the cytoskeletal protein SPECC1L leads to oblique facial clefting. Am J Hum Genet, 2011. 89(1): p. 44-55.
47. Shimada, H., et al., Epiplakin modifies the motility of the HeLa cells and accumulates at the outer surfaces of 3-D cell clusters. The Journal of Dermatology, 2013. 40(4): p. 249-258.
48. Colunga Biancatelli, R.M.L., et al., HSP90 Inhibitors Modulate SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation and Barrier Dysfunction. Frontiers in Physiology, 2022. 13.
49. McQueeney, K.E., et al., Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget, 2018. 9(9): p. 8223-8240.
50. Garton, A.J. and N.K. Tonks, PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. The EMBO Journal, 1994. 13(16): p. 3763-3771.
51. Ushio-Fukai, M., Localizing NADPH Oxidase–Derived ROS. Science’s STKE, 2006. 2006(349): p. re8-re8.