References
1. Sohrabi, C., et al., World Health Organization declares global
emergency: A review of the 2019 novel coronavirus (COVID-19). Int J
Surg, 2020. 76: p. 71-76.
2. Hussain, M., et al., Acute Respiratory Distress Syndrome and
COVID-19: A Literature Review. J Inflamm Res, 2021. 14: p. 7225-7242.
3. Horie, S., et al., Emerging pharmacological therapies for ARDS:
COVID-19 and beyond. Intensive care medicine, 2020. 46(12): p.
2265-2283.
4. Ranjbar, K., et al., Methylprednisolone or dexamethasone, which one
is superior corticosteroid in the treatment of hospitalized COVID-19
patients: a triple-blinded randomized controlled trial. BMC Infectious
Diseases, 2021. 21(1): p. 337.
5. Colunga Biancatelli, R.M.L., et al., The SARS-CoV-2 spike protein
subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2
transgenic mice and barrier dysfunction in human endothelial cells.
American Journal of Physiology-Lung Cellular and Molecular Physiology,
2021. 321(2): p. L477-L484.
6. Ni, W., et al., Role of angiotensin-converting enzyme 2 (ACE2) in
COVID-19. Critical Care, 2020. 24(1): p. 422.
7. Peacock, T.P., et al., The furin cleavage site in the SARS-CoV-2
spike protein is required for transmission in ferrets. Nature
Microbiology, 2021. 6(7): p. 899-909.
8. Ke, Z., et al., Structures and distributions of SARS-CoV-2 spike
proteins on intact virions. Nature, 2020. 588(7838): p. 498-502.
9. Angeli, F., et al., COVID-19, vaccines and deficiency of ACE(2) and
other angiotensinases. Closing the loop on the ”Spike effect”. Eur J
Intern Med, 2022. 103: p. 23-28.
10. Cognetti, J.S. and B.L. Miller, Monitoring Serum Spike Protein with
Disposable Photonic Biosensors Following SARS-CoV-2 Vaccination. Sensors
(Basel), 2021. 21(17).
11. Solopov, P.A. COVID-19 Vaccination and Alcohol Consumption:
Justification of Risks. Pathogens, 2023. 12, DOI:
10.3390/pathogens12020163.
12. Zhou, Y., et al., A comprehensive SARS-CoV-2–human protein–protein
interactome reveals COVID-19 pathobiology and potential host therapeutic
targets. Nature Biotechnology, 2023. 41(1): p. 128-139.
13. Salamoun, J.M., et al., Photooxygenation of an amino-thienopyridone
yields a more potent PTP4A3 inhibitor. Org Biomol Chem, 2016. 14(27): p.
6398-402.
14. McQueeney, K.E., et al., Targeting ovarian cancer and endothelium
with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget, 2017. 9(9):
p. 8223-8240.
15. Tang, X., T. Woodward, and S. Amar, A PTP4A3 peptide PIMAP39
modulates TNF-alpha levels and endotoxic shock. Journal of innate
immunity, 2010. 2(1): p. 43-55.
16. Zimmerman, M.W., et al., Protein-tyrosine phosphatase 4A3 (PTP4A3)
promotes vascular endothelial growth factor signaling and enables
endothelial cell motility. J Biol Chem, 2014. 289(9): p. 5904-13.
17. Lazo, J.S., et al., Credentialing and Pharmacologically Targeting
PTP4A3 Phosphatase as a Molecular Target for Ovarian Cancer.
Biomolecules, 2021. 11(7): p. 969.
18. Buzhdygan, T.P., et al., The SARS-CoV-2 spike protein alters barrier
function in 2D static and 3D microfluidic in-vitro models of the human
blood-brain barrier. Neurobiol Dis, 2020. 146: p. 105131.
19. Matute-Bello, G., et al., An official American Thoracic Society
workshop report: features and measurements of experimental acute lung
injury in animals. Am J Respir Cell Mol Biol, 2011. 44(5): p. 725-38.
20. Solopov, P., et al., Sex-Related Differences in Murine Models of
Chemically Induced Pulmonary Fibrosis. Int J Mol Sci, 2021. 22(11).
21. Colunga Biancatelli, R.M.L., et al., The Heat Shock Protein 90
Inhibitor, AT13387, Protects the Alveolo-Capillary Barrier and Prevents
HCl-Induced Chronic Lung Injury and Pulmonary Fibrosis. Cells, 2022.
11(6).
22. Barabutis, N., et al., Protective Mechanism of the Selective
Vasopressin V(1A) Receptor Agonist Selepressin against Endothelial
Barrier Dysfunction. J Pharmacol Exp Ther, 2020. 375(2): p. 286-295.
23. Narasaraju, T., et al., Excessive neutrophils and neutrophil
extracellular traps contribute to acute lung injury of influenza
pneumonitis. Am J Pathol, 2011. 179(1): p. 199-210.
24. Vainonen, J.P., M. Momeny, and J. Westermarck, Druggable cancer
phosphatases. Sci Transl Med, 2021. 13(588).
25. Hardy, S., et al., Physiological and oncogenic roles of the PRL
phosphatases. Febs j, 2018. 285(21): p. 3886-3908.
26. Yu, Z.-H. and Z.-Y. Zhang, Regulatory Mechanisms and Novel
Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases.
Chemical Reviews, 2018. 118(3): p. 1069-1091.
27. Hazeldine, J. and J.M. Lord, Neutrophils and COVID-19: Active
Participants and Rational Therapeutic Targets. Front Immunol, 2021. 12:
p. 680134.
28. Camp, J.V. and C.B. Jonsson, A Role for Neutrophils in Viral
Respiratory Disease. Front Immunol, 2017. 8: p. 550.
29. Solopov, P.A., R.M.L. Colunga Biancatelli, and J.D. Catravas,
Alcohol Increases Lung Angiotensin-Converting Enzyme 2 Expression and
Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Spike
Protein Subunit 1–Induced Acute Lung Injury in K18-hACE2
Transgenic Mice. The American Journal of Pathology, 2022. 192(7): p.
990-1000.
30. Tecchio, C., A. Micheletti, and M.A. Cassatella, Neutrophil-derived
cytokines: facts beyond expression. Front Immunol, 2014. 5: p. 508.
31. Jafarzadeh, A., M. Nemati, and S. Jafarzadeh, Contribution of STAT3
to the pathogenesis of COVID-19. Microb Pathog, 2021. 154: p. 104836.
32. Salem, F., et al., Activation of STAT3 signaling pathway in the
kidney of COVID-19 patients. J Nephrol, 2022. 35(3): p. 735-743.
33. Kandasamy, M., NF-κB signalling as a pharmacological target in
COVID-19: potential roles for IKKβ inhibitors. Naunyn Schmiedebergs Arch
Pharmacol, 2021. 394(3): p. 561-567.
34. Amin, S., et al., NLRP3 inflammasome activation in COVID-19: an
interlink between risk factors and disease severity. Microbes Infect,
2022. 24(1): p. 104913.
35. Colunga Biancatelli, R.M.L., P.A. Solopov, and J.D. Catravas, The
Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a
Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. Am J Pathol,
2022. 192(6): p. 837-846.
36. Chong, P.S.Y., et al., IL6 Promotes a STAT3-PRL3 Feedforward Loop
via SHP2 Repression in Multiple Myeloma. Cancer Res, 2019. 79(18): p.
4679-4688.
37. Ackermann, M., et al., Pulmonary Vascular Endothelialitis,
Thrombosis, and Angiogenesis in Covid-19. New England Journal of
Medicine, 2020. 383(2): p. 120-128.
38. Laveneziana, P., L. Sesé, and T. Gille, Pathophysiology of pulmonary
function anomalies in COVID-19 survivors. Breathe, 2021. 17(3): p.
210065.
39. Anastasio, F., et al., Medium-term impact of COVID-19 on pulmonary
function, functional capacity and quality of life. European Respiratory
Journal, 2021. 58(3): p. 2004015.
40. Huang, C., et al., 6-month consequences of COVID-19 in patients
discharged from hospital: a cohort study. The Lancet, 2021. 397(10270):
p. 220-232.
41. Mo, X., et al., Abnormal pulmonary function in COVID-19 patients at
time of hospital discharge. European Respiratory Journal, 2020. 55(6):
p. 2001217.
42. Winkler, E.S., et al., SARS-CoV-2 infection of human ACE2-transgenic
mice causes severe lung inflammation and impaired function. Nature
Immunology, 2020. 21(11): p. 1327-1335.
43. Chen, W. and J.Y. Pan, Anatomical and Pathological Observation and
Analysis of SARS and COVID-19: Microthrombosis Is the Main Cause of
Death. Biological Procedures Online, 2021. 23(1): p. 4.
44. Siddiqi, H.K., P. Libby, and P.M. Ridker, COVID-19 - A vascular
disease. Trends Cardiovasc Med, 2021. 31(1): p. 1-5.
45. Lei, Y., et al., SARS-CoV-2 Spike Protein Impairs Endothelial
Function via Downregulation of ACE 2. Circulation Research, 2021.
128(9): p. 1323-1326.
46. Saadi, I., et al., Deficiency of the cytoskeletal protein SPECC1L
leads to oblique facial clefting. Am J Hum Genet, 2011. 89(1): p. 44-55.
47. Shimada, H., et al., Epiplakin modifies the motility of the HeLa
cells and accumulates at the outer surfaces of 3-D cell clusters. The
Journal of Dermatology, 2013. 40(4): p. 249-258.
48. Colunga Biancatelli, R.M.L., et al., HSP90 Inhibitors Modulate
SARS-CoV-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular
Endothelial Activation and Barrier Dysfunction. Frontiers in Physiology,
2022. 13.
49. McQueeney, K.E., et al., Targeting ovarian cancer and endothelium
with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget, 2018. 9(9):
p. 8223-8240.
50. Garton, A.J. and N.K. Tonks, PTP-PEST: a protein tyrosine
phosphatase regulated by serine phosphorylation. The EMBO Journal, 1994.
13(16): p. 3763-3771.
51. Ushio-Fukai, M., Localizing NADPH Oxidase–Derived ROS. Science’s
STKE, 2006. 2006(349): p. re8-re8.