References:
1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr.Staphylococcus aureus infections: epidemiology, pathophysiology,
clinical manifestations, and management . Clin Microbiol Rev2015; 28(3):603-661.
2. Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus:
setting its sights on the human innate immune system .Microbiology (Reading) 2019; 165(4):367-385.
3. Yang JH, Bhargava P, McCloskey D, Mao N, Palsson BO, Collins JJ.Antibiotic-Induced Changes to the Host Metabolic Environment
Inhibit Drug Efficacy and Alter Immune Function . Cell Host
Microbe 2017; 22(6):757-765 e753.
4. Cunha CB, Opal SM. Antibiotic Stewardship: Strategies to
Minimize Antibiotic Resistance While Maximizing Antibiotic
Effectiveness . Med Clin North Am 2018; 102(5):831-843.
5. Zhang L, Liang E, Cheng Y, Mahmood T, Ge F, Zhou K, et al. Is
combined medication with natural medicine a promising therapy for
bacterial biofilm infection? Biomed Pharmacother 2020;
128:110184.
6. Zhang L, Wen B, Bao M, Cheng Y, Mahmood T, Yang W, et al.Andrographolide Sulfonate Is a Promising Treatment to Combat
Methicillin-resistant Staphylococcus aureus and Its Biofilms .Front Pharmacol 2021; 12:720685.
7. Zhou Y, Zong Y, Liu Z, Zhao H, Zhao X, Wang J. Astragalus
Polysaccharides Enhance the Immune Response to OVA Antigen in BALB/c
Mice . Biomed Res Int 2021; 2021:9976079.
8. Na HS, Lim YJ, Yun YS, Kweon MN, Lee HC. Ginsan enhances
humoral antibody response to orally delivered antigen . Immune
Netw 2010; 10(1):5-14.
9. Liu L, Hu L, Yao Z, Qin Z, Idehara M, Dai Y, et al. Mucosal
immunomodulatory evaluation and chemical profile elucidation of a
classical traditional Chinese formula, Bu-Zhong-Yi-Qi-Tang . J
Ethnopharmacol 2019; 228:188-199.
10. van Kessel KP, Bestebroer J, van Strijp JA.Neutrophil-Mediated Phagocytosis of Staphylococcus aureus .Front Immunol 2014; 5:467.
11. Krishna S, Miller LS. Innate and adaptive immune responses
against Staphylococcus aureus skin infections . Semin
Immunopathol 2012; 34(2):261-280.
12. Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, et al.The Inhibition Effect of Linezolid With Reyanning Mixture on
MRSA and its Biofilm is More Significant than That of Linezolid Alone .Front Pharmacol 2021; 12:766309.
13. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of
Staphylococcus aureus . Virulence 2021; 12(1):547-569.
14. Ji N, Yang J, Ji Y. Determining Impact of Growth Phases on
Capacity of Staphylococcus aureus to Adhere to and Invade Host Cells .Methods Mol Biol 2020; 2069:187-195.
15. Bateman SL, Seed PC. Procession to pediatric bacteremia and
sepsis: covert operations and failures in diplomacy . Pediatrics2010; 126(1):137-150.
16. Annunziato G. Strategies to Overcome Antimicrobial
Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A
Review . Int J Mol Sci 2019; 20(23).
17. Gor V, Ohniwa RL, Morikawa K. No Change, No Life? What We
Know about Phase Variation in Staphylococcus aureus .Microorganisms 2021; 9(2).
18. McGhee JR, Fujihashi K. Inside the mucosal immune system .PLoS Biol 2012; 10(9):e1001397.
19. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, et
al. Genome-wide association and HLA region fine-mapping studies
identify susceptibility loci for multiple common infections . Nat
Commun 2017; 8(1):599.
20. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et
al. Immunoglobulin A coating identifies colitogenic bacteria in
inflammatory bowel disease . Cell 2014; 158(5):1000-1010.
21. de Vor L, Rooijakkers SHM, van Strijp JAG. Staphylococci
evade the innate immune response by disarming neutrophils and forming
biofilms . FEBS Lett 2020; 594(16):2556-2569.
22. Dasari P, Nordengrun M, Vilhena C, Steil L, Abdurrahman G, Surmann
K, et al. The Protease SplB of Staphylococcus aureus Targets
Host Complement Components and Inhibits Complement-Mediated Bacterial
Opsonophagocytosis . J Bacteriol 2022; 204(1):e0018421.
23. Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD.Complement component C3 - The ”Swiss Army Knife” of innate
immunity and host defense . Immunol Rev 2016; 274(1):33-58.
24. Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to
First-Line Defense of the Innate Immune System . Front Immunol2021; 12:767175.
25. Teng TS, Ji AL, Ji XY, Li YZ. Neutrophils and Immunity: From
Bactericidal Action to Being Conquered . J Immunol Res 2017;
2017:9671604.
26. Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in
autoimmunity and inflammation . Nat Rev Drug Discov 2021;
20(1):39-63.
27. Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de
Almeida M, et al. An Inflamed Human Alveolar Model for Testing
the Efficiency of Anti-inflammatory Drugs in vitro . Front Bioeng
Biotechnol 2020; 8:987.
28. Bestebroer J, Aerts PC, Rooijakkers SH, Pandey MK, Kohl J, van
Strijp JA, et al. Functional basis for complement evasion by
staphylococcal superantigen-like 7 . Cell Microbiol 2010;
12(10):1506-1516.
29. Grousd JA, Rich HE, Alcorn JF. Host-Pathogen Interactions in
Gram-Positive Bacterial Pneumonia . Clin Microbiol Rev 2019;
32(3).
30. Wojcik-Bojek U, Rozalska B, Sadowska B. Staphylococcus
aureus-A Known Opponent against Host Defense Mechanisms and Vaccine
Development-Do We Still Have a Chance to Win? Int J Mol Sci2022; 23(2).
31. Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG,
Haas PA. Staphylococcal superantigen-like protein 13 activates
neutrophils via formyl peptide receptor 2 . Cell Microbiol 2018;
20(11):e12941.
32. do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen
Weapons Against Phagocytes . Front Microbiol 2016; 7:42.
33. Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD.Drivers and regulators of humoral innate immune responses to
infection and cancer . Mol Immunol 2020; 121:99-110.
34. Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering
the Immune Response to Favor Their Survival . Front Immunol 2020;
11:819.
35. Irmscher S, Doring N, Halder LD, Jo EAH, Kopka I, Dunker C, et al.Kallikrein Cleaves C3 and Activates Complement . J Innate
Immun 2018; 10(2):94-105.
36. Woehl JL, Ramyar KX, Katz BB, Walker JK, Geisbrecht BV. The
structural basis for inhibition of the classical and lectin complement
pathways by S. aureus extracellular adherence protein . Protein
Sci 2017; 26(8):1595-1608.
37. Sage MAG, Cranmer KD, Semeraro ML, Ma S, Galkina EV, Tran Y, et al.A Factor H-Fc fusion protein increases complement-mediated
opsonophagocytosis and killing of community associated
methicillin-resistant Staphylococcus aureus . PLoS One 2022;
17(3):e0265774.
38. Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus
aureus Manipulates Innate Immunity through Own and Host-Expressed
Proteases . Front Cell Infect Microbiol 2017; 7:166.
39. Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic
Immune Battles of History: Neutrophils vs. Staphylococcus aureus .Front Cell Infect Microbiol 2017; 7:286.
40. Pivard M, Moreau K, Vandenesch F. Staphylococcus aureus
Arsenal To Conquer the Lower Respiratory Tract . mSphere 2021;
6(3).
41. Yao Z, Cary BP, Bingman CA, Wang C, Kreitler DF, Satyshur KA, et al.Use of a Stereochemical Strategy To Probe the Mechanism of
Phenol-Soluble Modulin alpha3 Toxicity . J Am Chem Soc 2019;
141(19):7660-7664.
42. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, et
al. Staphylococcus aureus biofilms prevent macrophage
phagocytosis and attenuate inflammation in vivo . J Immunol 2011;
186(11):6585-6596.
43. Zhu H, Jin H, Zhang C, Yuan T. Intestinal
methicillin-resistant Staphylococcus aureus causes prosthetic infection
via ’Trojan Horse’ mechanism: Evidence from a rat model . Bone
Joint Res 2020; 9(4):152-161.
44. Falugi F, Kim HK, Missiakas DM, Schneewind O. Role of
protein A in the evasion of host adaptive immune responses by
Staphylococcus aureus . mBio 2013; 4(5):e00575-00513.
45. Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, et al.Staphylococcus aureus infection induces protein A-mediated
immune evasion in humans . J Exp Med 2014; 211(12):2331-2339.
46. Smith EJ, Visai L, Kerrigan SW, Speziale P, Foster TJ. The
Sbi protein is a multifunctional immune evasion factor of Staphylococcus
aureus . Infect Immun 2011; 79(9):3801-3809.
47. Nasser A, Moradi M, Jazireian P, Safari H, Alizadeh-Sani M, Pourmand
MR, et al. Staphylococcus aureus versus neutrophil: Scrutiny of
ancient combat . Microb Pathog 2019; 131:259-269.
48. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJ, Ruyken M, Malone
CL, et al. Staphylococcus aureus Staphopain A inhibits
CXCR2-dependent neutrophil activation and chemotaxis . EMBO J2012; 31(17):3607-3619.
49. Rigby KM, DeLeo FR. Neutrophils in innate host defense
against Staphylococcus aureus infections . Semin Immunopathol2012; 34(2):237-259.
50. Herzog S, Dach F, de Buhr N, Niemann S, Schlagowski J, Chaves-Moreno
D, et al. High Nuclease Activity of Long Persisting
Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis
Patients Protects Against NET-Mediated Killing . Front Immunol2019; 10:2552.
51. Schilcher K, Andreoni F, Uchiyama S, Ogawa T, Schuepbach RA,
Zinkernagel AS. Increased neutrophil extracellular trap-mediated
Staphylococcus aureus clearance through inhibition of nuclease activity
by clindamycin and immunoglobulin . J Infect Dis 2014;
210(3):473-482.
52. Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G,
et al. Staphylococcus aureus panton-valentine leukocidin is a
very potent cytotoxic factor for human neutrophils . PLoS Pathog2010; 6(1):e1000715.
53. Edwards MR, Walton RP, Jackson DJ, Feleszko W, Skevaki C, Jartti T,
et al. The potential of anti-infectives and immunomodulators as
therapies for asthma and asthma exacerbations . Allergy 2018;
73(1):50-63.
54. Rowe SE, Beam JE, Conlon BP. Recalcitrant Staphylococcus
aureus Infections: Obstacles and Solutions . Infect Immun 2021;
89(4).
55. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, et al.Novel antibody-antibiotic conjugate eliminates intracellular S.
aureus . Nature 2015; 527(7578):323-328.
56. Mariathasan S, Tan MW. Antibody-Antibiotic Conjugates: A
Novel Therapeutic Platform against Bacterial Infections . Trends
Mol Med 2017; 23(2):135-149.
57. Kumar S, Mukherjee MM, Varela MF. Modulation of Bacterial
Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily .Int J Bacteriol 2013; 2013.
58. Adams KN, Szumowski JD, Ramakrishnan L. Verapamil, and its
metabolite norverapamil, inhibit macrophage-induced, bacterial efflux
pump-mediated tolerance to multiple anti-tubercular drugs . J
Infect Dis 2014; 210(3):456-466.
59. Bonomo RA. beta-Lactamases: A Focus on Current Challenges .Cold Spring Harb Perspect Med 2017; 7(1).
60. Jansen KU, Knirsch C, Anderson AS. The role of vaccines in
preventing bacterial antimicrobial resistance . Nat Med 2018;
24(1):10-19.
61. Kennedy DA, Read AFJPotRSBBS. Why does drug resistance
readily evolve but vaccine resistance does not? 2017;
284(1851):20162562.
62. Buchy P, Ascioglu S, Buisson Y, Datta S, Nissen M, Tambyah PA, et
al. Impact of vaccines on antimicrobial resistance . Int J
Infect Dis 2020; 90:188-196.
63. Fattom A, Matalon A, Buerkert J, Taylor K, Damaso S, Boutriau D.Efficacy profile of a bivalent Staphylococcus aureus
glycoconjugated vaccine in adults on hemodialysis: Phase III randomized
study . Hum Vaccin Immunother 2015; 11(3):632-641.
64. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, et
al. Effect of an investigational vaccine for preventing
Staphylococcus aureus infections after cardiothoracic surgery: a
randomized trial . JAMA 2013; 309(13):1368-1378.
65. Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, et al.Traditional Uses, Pharmacological Effects, and Molecular
Mechanisms of Licorice in Potential Therapy of COVID-19 . Front
Pharmacol 2021; 12:719758.
66. Lee SA, Lee SH, Kim JY, Lee WS. Effects of glycyrrhizin on
lipopolysaccharide-induced acute lung injury in a mouse model . J
Thorac Dis 2019; 11(4):1287-1302.
67. Menegazzi M, Di Paola R, Mazzon E, Genovese T, Crisafulli C, Dal
Bosco M, et al. Glycyrrhizin attenuates the development of
carrageenan-induced lung injury in mice . Pharmacol Res 2008;
58(1):22-31.
68. Abuelsaad AS. Supplementation with Astragalus
polysaccharides alters Aeromonas-induced tissue-specific cellular immune
response . Microb Pathog 2014; 66:48-56.
69. Sun S, Wang J, Wang J, Wang F, Yao S, Xia H. Maresin 1
Mitigates Sepsis-Associated Acute Kidney Injury in Mice via Inhibition
of the NF-kappaB/STAT3/MAPK Pathways . Front Pharmacol 2019;
10:1323.
70. Cai JY, Hou YN, Li J, Ma K, Yao GD, Liu WW, et al.Prostaglandin E2 attenuates synergistic bactericidal effects
between COX inhibitors and antibiotics on Staphylococcus aureus .Prostaglandins Leukot Essent Fatty Acids 2018; 133:16-22.
71. Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, et al.Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its
Phytochemistry, Biological Activities, Clinical Evidence and
Toxicology . Plants (Basel) 2021; 10(12).
72. Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM.18beta-Glycyrrhetinic acid inhibits methicillin-resistant
Staphylococcus aureus survival and attenuates virulence gene
expression . Antimicrob Agents Chemother 2013; 57(1):241-247.
73. Bordbar N, Karimi MH, Amirghofran Z. Phenotypic and
functional maturation of murine dendritic cells induced by 18 alpha- and
beta-glycyrrhetinic acid . Immunopharmacol Immunotoxicol 2014;
36(1):52-60.
74. Li XL, Zhou AG. Evaluation of the immunity activity of
glycyrrhizin in AR mice . Molecules 2012; 17(1):716-727.
75. Wu SC, Yang ZQ, Liu F, Peng WJ, Qu SQ, Li Q, et al.Antibacterial Effect and Mode of Action of Flavonoids From
Licorice Against Methicillin-Resistant Staphylococcus aureus .Front Microbiol 2019; 10:2489.
76. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, et al.Pharmacological potential of ginseng and its major component
ginsenosides . J Ginseng Res 2021; 45(2):199-210.
77. Na S, Kim JH, Rhee YK, Oh SW. Enhancing the antimicrobial
activity of ginseng against Bacillus cereus and Staphylococcus aureus by
heat treatment . Food Sci Biotechnol 2018; 27(1):203-210.
78. Xue P, Yao Y, Yang XS, Feng J, Ren GX. Improved
antimicrobial effect of ginseng extract by heat transformation . J
Ginseng Res 2017; 41(2):180-187.
79. Lee SO, Lee S, Kim SJ, Rhee DK. Korean Red Ginseng enhances
pneumococcal Deltapep27 vaccine efficacy by inhibiting reactive oxygen
species production . J Ginseng Res 2019; 43(2):218-225.
80. Prenafeta A, March R, Foix A, Casals I, Costa L. Study of
the humoral immunological response after vaccination with a
Staphylococcus aureus biofilm-embedded bacterin in dairy cows: possible
role of the exopolysaccharide specific antibody production in the
protection from Staphylococcus aureus induced mastitis . Vet
Immunol Immunopathol 2010; 134(3-4):208-217.
81. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of
Staphylococcus aureus-infected septic mice by suppression of early acute
inflammation and enhanced antimicrobial activity by ginsan . FEMS
Immunol Med Microbiol 2006; 46(2):187-197.
82. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, et al.The immunomodulator ginsan induces resistance to experimental
sepsis by inhibiting Toll-like receptor-mediated inflammatory signals .Eur J Immunol 2006; 36(1):37-45.
83. Silvestrini P, Beccaria C, Pereyra EAL, Renna MS, Ortega HH,
Calvinho LF, et al. Intramammary inoculation of Panax ginseng
plays an immunoprotective role in Staphylococcus aureus infection in a
murine model . Res Vet Sci 2017; 115:211-220.
84. Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S.Pharmacological Efficacy of Ginseng against Respiratory Tract
Infections . Molecules 2021; 26(13).
85. Sung WS, Lee DG. The combination effect of Korean red
ginseng saponins with kanamycin and cefotaxime against
methicillin-resistant Staphylococcus aureus . Biol Pharm Bull2008; 31(8):1614-1617.
86. He LX, Ren JW, Liu R, Chen QH, Zhao J, Wu X, et al. Ginseng
(Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune
responses in mice via increased macrophage phagocytosis capacity, NK
cell activity and Th cells secretion . Food Funct 2017;
8(10):3523-3532.
87. Wang M, Guilbert LJ, Li J, Wu Y, Pang P, Basu TK, et al. A
proprietary extract from North American ginseng (Panax quinquefolium)
enhances IL-2 and IFN-gamma productions in murine spleen cells induced
by Con-A . Int Immunopharmacol 2004; 4(2):311-315.
88. Miller SC, Ti L, Shan J. Dietary supplementation with an
extract of North American ginseng in adult and juvenile mice increases
natural killer cells . Immunol Invest 2012; 41(2):157-170.
89. Mancuso C, Santangelo R. Panax ginseng and Panax
quinquefolius: From pharmacology to toxicology . Food Chem
Toxicol 2017; 107(Pt A):362-372.
90. Wang M, Guilbert LJ, Ling L, Li J, Wu Y, Xu S, et al.Immunomodulating activity of CVT-E002, a proprietary extract
from North American ginseng (Panax quinquefolium) . J Pharm
Pharmacol 2001; 53(11):1515-1523.
91. Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L. Evaluation
of anti-inflammatory activity of compounds isolated from the rhizome of
Ophiopogon japonicas . BMC Complement Altern Med 2017; 17(1):7.
92. Lei F, Weckerle CS, Heinrich M. Liriopogons (Genera
Ophiopogon and Liriope, Asparagaceae): A Critical Review of the
Phytochemical and Pharmacological Research . Front Pharmacol2021; 12:769929.
93. Li L, Li Y, Zhu F, Cheung AL, Wang G, Bai G, et al. New
Mechanistic Insights into Purine Biosynthesis with Second Messenger
c-di-AMP in Relation to Biofilm-Related Persistent Methicillin-Resistant
Staphylococcus aureus Infections . mBio 2021; 12(6):e0208121.
94. Sun Q, Chen L, Gao M, Jiang W, Shao F, Li J, et al.Ruscogenin inhibits lipopolysaccharide-induced acute lung injury
in mice: involvement of tissue factor, inducible NO synthase and nuclear
factor (NF)-kappaB . Int Immunopharmacol 2012; 12(1):88-93.
95. Song J, Kou J, Huang Y, Yu B. Ruscogenin mainly inhibits
nuclear factor-kappaB but not Akt and mitogen-activated protein kinase
signaling pathways in human umbilical vein endothelial cells . J
Pharmacol Sci 2010; 113(4):409-413.
96. Wu Y, Wang Y, Gong S, Tang J, Zhang J, Li F, et al.Ruscogenin alleviates LPS-induced pulmonary endothelial cell
apoptosis by suppressing TLR4 signaling . Biomed Pharmacother2020; 125:109868.
97. Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, et al.Toxin-induced necroptosis is a major mechanism of Staphylococcus
aureus lung damage . PLoS Pathog 2015; 11(4):e1004820.
98. Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, et al.Comparative Transcriptome Analysis Reveals the Protective
Mechanism of Glycyrrhinic Acid for Deoxynivalenol-Induced Inflammation
and Apoptosis in IPEC-J2 Cells . Oxid Med Cell Longev 2020;
2020:5974157.
99. Miyake T, Wang D, Matsuoka H, Morita K, Yasuda H, Yatera K, et al.Endocytosis of particulate matter induces cytokine production by
neutrophil via Toll-like receptor 4 . Int Immunopharmacol 2018;
57:190-199.
100. Sun W, Hu W, Meng K, Yang L, Zhang W, Song X, et al.Activation of macrophages by the ophiopogon polysaccharide
liposome from the root tuber of Ophiopogon japonicus . Int J Biol
Macromol 2016; 91:918-925.
101. Fu S, Lu W, Yu W, Hu J. Protective effect of Cordyceps
sinensis extract on lipopolysaccharide-induced acute lung injury in
mice . Biosci Rep 2019; 39(6).
102. Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, et al.Trends in the Immunomodulatory Effects of Cordyceps militaris:
Total Extracts, Polysaccharides and Cordycepin . Front Pharmacol2020; 11:575704.
103. Choi YH, Kim GY, Lee HH. Anti-inflammatory effects of
cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages
through Toll-like receptor 4-mediated suppression of mitogen-activated
protein kinases and NF-kappaB signaling pathways . Drug Des Devel
Ther 2014; 8:1941-1953.
104. Lei J, Wei Y, Song P, Li Y, Zhang T, Feng Q, et al.Cordycepin inhibits LPS-induced acute lung injury by inhibiting
inflammation and oxidative stress . Eur J Pharmacol 2018;
818:110-114.
105. Qing R, Huang Z, Tang Y, Xiang Q, Yang F. Cordycepin
alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1
pathway . Int Immunopharmacol 2018; 60:18-25.
106. Trindade-da-Silva CA, Clemente-Napimoga JT, Abdalla HB, Rosa SM,
Ueira-Vieira C, Morisseau C, et al. Soluble epoxide hydrolase
inhibitor, TPPU, increases regulatory T cells pathway in an arthritis
model . FASEB J 2020; 34(7):9074-9086.
107. Leelahavanichkul A, Huang Y, Hu X, Zhou H, Tsuji T, Chen R, et al.Chronic kidney disease worsens sepsis and sepsis-induced acute
kidney injury by releasing High Mobility Group Box Protein-1 .Kidney Int 2011; 80(11):1198-1211.
108. Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of
medicinal components of Atractylodes lancea (Thunb.) DC . Chin
Med 2018; 13:59.
109. Xu Z, Cai Y, Fan G, Liu X, Dai YJPe. Application of
Atractylodes Macrocephala Koidz Extract in Methicillin-Resistant
Staphylococcus Aureus . 2017; 174:410-415.
110. Zhang JL, Huang WM, Zeng QY. Atractylenolide I protects
mice from lipopolysaccharide-induced acute lung injury . Eur J
Pharmacol 2015; 765:94-99.
111. Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE,
Itan M, et al. A protective role for IL-13 receptor alpha 1 in
bleomycin-induced pulmonary injury and repair . Mucosal Immunol2016; 9(1):240-253.
112. de Souza HS, Tortori CA, Lintomen L, Figueiredo RT, Bernardazzi C,
Leng L, et al. Macrophage migration inhibitory factor promotes
eosinophil accumulation and tissue remodeling in eosinophilic
esophagitis . Mucosal Immunol 2015; 8(5):1154-1165.
113. Zhang S, Zis O, Ly PT, Wu Y, Zhang S, Zhang M, et al.Down-regulation of MIF by NFkappaB under hypoxia accelerated
neuronal loss during stroke . FASEB J 2014; 28(10):4394-4407.
114. Liu P, Zhao G, Zhang L, Gong Y, Gu Y. Atractylenolide I
inhibits antibiotic-induced dysbiosis of the intestinal microbiome .Ann Transl Med 2021; 9(20):1539.
115. Ji GQ, Chen RQ, Zheng JX. Macrophage activation by
polysaccharides from Atractylodes macrocephala Koidz through the nuclear
factor-kappaB pathway . Pharm Biol 2015; 53(4):512-517.
116. Li BX, Li WY, Tian YB, Guo SX, Huang YM, Xu DN, et al.Polysaccharide of Atractylodes macrocephala Koidz Enhances
Cytokine Secretion by Stimulating the TLR4-MyD88-NF-kappaB Signaling
Pathway in the Mouse Spleen . J Med Food 2019; 22(9):937-943.
117. Qin J, Wang HY, Zhuang D, Meng FC, Zhang X, Huang H, et al.Structural characterization and immunoregulatory activity of two
polysaccharides from the rhizomes of Atractylodes lancea (Thunb.) DC .Int J Biol Macromol 2019; 136:341-351.
118. Liu XH, Zhu RJ, Hu F, Guo L, Yang YL, Feng SL. Tissue
distribution of six major bio-active components after oral
administration of Zhenqi Fuzheng capsules to rats using ultra-pressure
liquid chromatography-tandem mass spectrometry . J Chromatogr B
Analyt Technol Biomed Life Sci 2015; 986-987:44-53.
119. Liu J, Mao JJ, Li SQ, Lin H. Preliminary Efficacy and
Safety of Reishi & Privet Formula on Quality of Life Among Non-Small
Cell Lung Cancer Patients Undergoing Chemotherapy: A Randomized
Placebo-Controlled Trial . Integr Cancer Ther 2020;
19:1534735420944491.
120. Jin M, Zhao K, Huang Q, Shang P. Structural features and
biological activities of the polysaccharides from Astragalus
membranaceus . Int J Biol Macromol 2014; 64:257-266.
121. Liu QY, Yao YM, Yu Y, Dong N, Sheng ZY. Astragalus
polysaccharides attenuate postburn sepsis via inhibiting negative
immunoregulation of CD4+ CD25(high) T cells . PLoS One 2011;
6(6):e19811.
122. Song T, Hou X, Yu X, Wang Z, Wang R, Li Y, et al. Adjuvant
Treatment with Yupingfeng Formula for Recurrent Respiratory Tract
Infections in Children: A Meta-analysis of Randomized Controlled
Trials . Phytother Res 2016; 30(7):1095-1103.
123. Zuo H, Zhang Q, Su S, Chen Q, Yang F, Hu Y. A network
pharmacology-based approach to analyse potential targets of traditional
herbal formulas: An example of Yu Ping Feng decoction . Sci Rep2018; 8(1):11418.
124. Du CY, Choi RC, Zheng KY, Dong TT, Lau DT, Tsim KW. Yu Ping
Feng San, an ancient Chinese herbal decoction containing Astragali
Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix,
regulates the release of cytokines in murine macrophages . PLoS
One 2013; 8(11):e78622.
125. Du CY, Choi RC, Dong TT, Lau DT, Tsim KW. Yu Ping Feng San,
an ancient Chinese herbal decoction, regulates the expression of
inducible nitric oxide synthase and cyclooxygenase-2 and the activity of
intestinal alkaline phosphatase in cultures . PLoS One 2014;
9(6):e100382.
126. Masters EA, Ricciardi BF, Bentley KLM, Moriarty TF, Schwarz EM,
Muthukrishnan G. Skeletal infections: microbial pathogenesis,
immunity and clinical management . Nat Rev Microbiol 2022.
127. Scherr TD, Roux CM, Hanke ML, Angle A, Dunman PM, Kielian T.Global transcriptome analysis of Staphylococcus aureus biofilms
in response to innate immune cells . Infect Immun 2013;
81(12):4363-4376.
128. Yu S, Guo Z, Guan Y, Lu YY, Hao P, Li Y, et al. Combining
ZHENG Theory and High-Throughput Expression Data to Predict New Effects
of Chinese Herbal Formulae . Evid Based Complement Alternat Med2012; 2012:986427.
129. Hoo RL, Wong JY, Qiao C, Xu A, Xu H, Lam KS. The effective
fraction isolated from Radix Astragali alleviates glucose intolerance,
insulin resistance and hypertriglyceridemia in db/db diabetic mice
through its anti-inflammatory activity . Nutr Metab (Lond) 2010;
7:67.
130. Kim KA, Son YO, Kim SS, Jang YS, Baek YH, Kim CC, et al.Glycoproteins isolated from Atractylodes macrocephala Koidz
improve protective immune response induction in a mouse model .Food Sci Biotechnol 2018; 27(6):1823-1831.
131. Novianti E, Katsuura G, Kawamura N, Asakawa A, Inui A.Atractylenolide-III suppresses lipopolysaccharide-induced
inflammation via downregulation of toll-like receptor 4 in mouse
microglia . Heliyon 2021; 7(10):e08269.
132. Khan S, Shin EM, Choi RJ, Jung YH, Kim J, Tosun A, et al.Suppression of LPS-induced inflammatory and NF-kappaB responses
by anomalin in RAW 264.7 macrophages . J Cell Biochem 2011;
112(8):2179-2188.
133. Fan W, Zheng P, Wang Y, Hao P, Liu J, Zhao X. Analysis of
immunostimulatory activity of polysaccharide extracted from Yu-Ping-Feng
in vitro and in vivo . Biomed Pharmacother 2017; 93:146-155.
134. Zhuang W, Fan Z, Chu Y, Wang H, Yang Y, Wu L, et al.Chinese Patent Medicines in the Treatment of Coronavirus Disease
2019 (COVID-19) in China . Front Pharmacol 2020; 11:1066.
135. Fu S, Zhang J, Gao X, Xia Y, Ferrelli R, Fauci A, et al.Clinical practice of traditional Chinese medicines for chronic
heart failure . Heart Asia 2010; 2(1):24-27.
136. Huang X, Duan X, Wang K, Wu J, Zhang X. Shengmai injection
as an adjunctive therapy for the treatment of chronic obstructive
pulmonary disease: A systematic review and meta-analysis .Complement Ther Med 2019; 43:140-147.
137. Lu J, Yu Y, Wang XJ, Chai RP, Lyu XK, Deng MH, et al.Mechanism of Shengmai Injection () on Anti-Sepsis and Protective
Activities of Intestinal Mucosal Barrier in Mice . Chin J Integr
Med 2021.
138. Li DM, Qi RH, Zhang HC, Liao X, Xie YM, Zhang JH, et al.[Clinical application evaluation and revision suggestions of
clinical practice guideline on traditional Chinese medicine therapy
alone or combined with antibiotics for community acquired pneumonia] .Zhongguo Zhong Yao Za Zhi 2018; 43(24):4759-4764.
139. Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, et al.Poly(amino acids) as a potent self-adjuvanting delivery system
for peptide-based nanovaccines . Sci Adv 2020; 6(5):eaax2285.
140. Chai R, Zhang Y, Lu J, Wang T, Chen XJCJPE. Research on
mechanism of shengmai injection in the treatment of sepsis based on
metabolomics . 2019; 14:30-34.
141. Lu J, Lyu X, Chai R, Yu Y, Deng M, Zhan X, et al.Investigation of the Mechanism of Shengmai Injection on Sepsis
by Network Pharmacology Approaches . Evid Based Complement
Alternat Med 2020; 2020:4956329.
142. Azoulay E, Russell L, Van de Louw A, Metaxa V, Bauer P, Povoa P, et
al. Diagnosis of severe respiratory infections in
immunocompromised patients . Intensive Care Med 2020;
46(2):298-314.
143. Zhou E, Li Y, Wei Z, Fu Y, Lei H, Zhang N, et al.Schisantherin A protects lipopolysaccharide-induced acute
respiratory distress syndrome in mice through inhibiting NF-kappaB and
MAPKs signaling pathways . Int Immunopharmacol 2014;
22(1):133-140.
144. Minami M, Konishi T, Makino T. Effect of Hochuekkito
(Buzhongyiqitang) on Nasal Cavity Colonization of Methicillin-Resistant
Staphylococcus aureus in Murine Model . Medicines (Basel) 2018;
5(3).
145. Kitahara M, Takayama S, Akaishi T, Kikuchi A, Ishii T.Hochuekkito can Prevent the Colonization of
Methicillin-Resistant Staphylococcus aureus in Upper Respiratory Tract
of Acute Stroke Patients . Front Pharmacol 2021; 12:683171.
146. Yang F, Dong X, Yin X, Wang W, You L, Ni J. Radix Bupleuri:
A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and
Toxicology . Biomed Res Int 2017; 2017:7597596.
147. Ogawa-Ochiai K, Ishikawa H, Li H, Vu Quang L, Kimoto I, Takamura M,
et al. Immunological and Preventive Effects of Hochuekkito and
Kakkonto Against Coronavirus Disease in Healthcare Workers: A
Retrospective Observational Study . Front Pharmacol 2021;
12:766402.
148. Matsumoto T, Noguchi M, Hayashi O, Makino K, Yamada H.Hochuekkito, a Kampo (traditional Japanese herbal) Medicine,
Enhances Mucosal IgA Antibody Response in Mice Immunized with
Antigen-entrapped Biodegradable Microparticles . Evid Based
Complement Alternat Med 2010; 7(1):69-77.
149. Shimato Y, Ota M, Asai K, Atsumi T, Tabuchi Y, Makino T.Comparison of byakujutsu (Atractylodes rhizome) and sojutsu
(Atractylodes lancea rhizome) on anti-inflammatory and immunostimulative
effects in vitro . J Nat Med 2018; 72(1):192-201.
150. Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA.Development of a vaccine against Staphylococcus aureus invasive
infections: Evidence based on human immunity, genetics and bacterial
evasion mechanisms . FEMS Microbiol Rev 2020; 44(1):123-153.