References
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. In.
Apel, W., Schulze, W. X., & Bock, R. (2010). Identification of protein stability determinants in chloroplasts. Plant J, 63 (4), 636-650. doi:10.1111/j.1365-313X.2010.04268.x
Barragan, A. C., & Weigel, D. (2021). Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell, 33 (4), 814-831. doi:10.1093/plcell/koaa002
Bassetti, N. (2022). E(gg)xit strategy of plant defence: Evolution and genetics of a butterfly egg-triggered cell death. (Ph.D.), Wageningen University, Wageningen.
Bassetti, N., Caarls, L., Bukovinszkine’Kiss, G., El-Soda, M., van Veen, J., Bouwmeester, K., . . . Fatouros, N. E. (2022). Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC Plant Biology, 22 (1), 140. doi:10.1186/s12870-022-03522-y
Basu, S., Varsani, S., & Louis, J. (2018). Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores. Mol Plant Microbe Interact, 31 (1), 13-21. doi:10.1094/mpmi-07-17-0183-fi
Bentur, J. S., Rawat, N., Divya, D., Sinha, D. K., Agarrwal, R., Atray, I., & Nair, S. (2016). Rice-gall midge interactions: Battle for survival. J Insect Physiol, 84 , 40-49. doi:10.1016/j.jinsphys.2015.09.008
Berkey, R., Bendigeri, D., & Xiao, S. (2012). Sphingolipids and Plant Defense/Disease: The “Death” Connection and Beyond. Frontiers in Plant Science, 3 . doi:10.3389/fpls.2012.00068
Bonnet, C., Lassueur, S., Ponzio, C., Gols, R., Dicke, M., & Reymond, P. (2017). Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore inBrassica nigra . BMC Plant Biol., 17 (1), 127. doi:10.1186/s12870-017-1074-7
Botha, A.-M., Li, Y., & Lapitan, N. L. V. (2005). Cereal host interactions with Russian wheat aphid: A review. Journal of Plant Interactions, 1 (4), 211-222. doi:10.1080/17429140601073035
Broman KW, Wu H, Sen S, & Churchill G. (2003) QTL mapping in experimental crosses. Bioinformatics , 19: 889–890.
Bruessow, F., Gouhier-Darimont, C., Buchala, A., Metraux, J. P., & Reymond, P. (2010). Insect eggs suppress plant defence against chewing herbivores. Plant J, 62 (5), 876-885. doi:10.1111/j.1365-313X.2010.04200.x
Caarls, L., Bassetti, N., Verbaarschot, P., Mumm, R., van Loon, J. J. A., Schranz, M. E., & Fatouros, N. E. (2023). Hypersensitive-like response induced by cabbage white butterflies is specifically induced by molecules from egg-associated secretions in Brassica plantsFrontiers in Ecology and Evolution, 10 , 1070859. doi: doi: 10.3389/fevo.2022.1070859
Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., . . . Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6 (2), 80-92. doi:10.4161/fly.19695
Crall, J. D., Switzer, C. M., Oppenheimer, R. L., Ford Versypt, A. N., Dey, B., Brown, A., … & de Bivort, B. L. (2018). Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science , 362(6415), 683-686._DOI: 10.1126/science.aat1598 _
Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol, 66 , 487-511. doi:10.1146/annurev-arplant-050213-040012
Dakouri, A., Zhang, X., Peng, G., Falk, K. C., Gossen, B. D., Strelkov, S. E., & Yu, F. (2018). Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Scientific Reports, 8 (1), 17657. doi:10.1038/s41598-018-36187-5
Dogimont, C., Chovelon, V., Pauquet, J., Boualem, A., & Bendahmane, A. (2014). The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J, 80 (6), 993-1004. doi:10.1111/tpj.12690
Dolatabadian, A., & Fernando, W. G. D. (2022). Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions.Biology (Basel), 11 (3). doi:10.3390/biology11030421
Fatouros, N. E., Cusumano, A., Danchin, E. G. J., & Colazza, S. (2016). Prospects of herbivore egg-killing plant defenses for sustainable crop protection. Ecology and Evolution, 6 (19), 6906-6918.
Fatouros, N. E., Pineda, A., Huigens, M. E., Broekgaarden, C., Shimwela, M. M., Figueroa Candia, I. A., . . . Bukovinszky, T. (2014). Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proceedings of the Royal Society. B: Biological Sciences, 281 (1789).
Forister ML, Pelton EM, Black SH (2019) Declines in Insect Abundance and Diversity: We Know Enough to Act Now. Conserv Sci Pract 1 (8): 1–8_https://doi.org/10.1111/csp2.80 _
Gilardoni, P. A., Hettenhausen, C., Baldwin, I. T., & Bonaventure, G. (2011). Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell, 23 (9), 3512-3532. doi:10.1105/tpc.111.088229
Gouhier-Darimont, C., Stahl, E., Glauser, G., & Reymond, P. (2019). The Arabidopsis Lectin Receptor Kinase LecRK-I.8 Is Involved in Insect Egg Perception. Front Plant Sci, 10 , 623. doi:10.3389/fpls.2019.00623
Griese, E., Caarls, L., Bassetti, N., Mohammadin, S., Verbaarschot, P., Bukovinszkine’Kiss, G., . . . Fatouros, N. E. (2021). Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. New Phytol., 230 , 341-353. doi:10.1111/nph.17145
Griese, E., Dicke, M., Hilker, M., & Fatouros, N. E. (2017). Plant response to butterfly eggs : Inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering /631/158/2456 /631/158/856 article. Scientific Reports, 7 (1).
Griese, E., Pineda, A., Pashalidou, F. G., Iradi, E. P., Hilker, M., Dicke, M., & Fatouros, N. E. (2020). Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Oecologia, 192 (2), 463-475. doi:10.1007/s00442-019-04590-y
Groux, R. (2019). Molecular mechanisms of insect egg-triggered cell death (PhD), Université de Lausanne Lausanne.
Groux, R., Stahl, E., Gouhier-Darimont, C., Kerdaffrec, E., Jimenez-Sandoval, P., Santiago, J., & Reymond, P. (2021). Arabidopsis natural variation in insect egg-induced cell death reveals a role for LECTIN RECEPTOR KINASE-I.1. Plant Physiol, 185 (1), 240-255. doi:10.1093/plphys/kiaa022
Harris, M. O., Freeman, T. P., Anderson, K. M., Harmon, J. P., Moore, J. A., Payne, S. A., . . . Stuart, J. J. (2012). Hessian fly Avirulence gene loss-of-function defeats plant resistance without compromising the larva’s ability to induce a gall tissue. Entomologia Experimentalis et Applicata, 145 (3), 238-249. doi:https://doi.org/10.1111/eea.12010
Harvey, J. A., Gols, R., Wagenaar, R., & Bezemer, T. M. (2007). Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. Journal of Chemical Ecology, 33 (8), 1556-1569.
Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E., & Lyons, E. (2017). SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics, 33 (14), 2197-2198. doi:10.1093/bioinformatics/btx144
Hilker, M., & Fatouros, N. E. (2015). Plant responses to insect egg deposition. Annual Review of Entomology, 60 , 493-515.
Hilker, M., & Fatouros, N. E. (2016). Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr. Opin. Plant Biol., 32 , 9-16. doi:10.1016/j.pbi.2016.05.003
Himabindu, K., Suneetha, K., Sama, V. S. A. K., & Bentur, J. S. (2010). A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica, 174 , 179-187.
Hu, D., Jing, J., Snowdon, R. J., Mason, A. S., Shen, J., Meng, J., & Zou, J. (2021). Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol J, 19 (9), 1693-1712. doi:10.1111/pbi.13636
Hu, L., Ye, M., Kuai, P., Ye, M., Erb, M., & Lou, Y. (2018). OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore.New Phytol, 219 (3), 1097-1111. doi:10.1111/nph.15247
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444 (7117), 323-329. doi:10.1038/nature05286
Kaplinski, L., Lepamets, M., & Remm, M. (2015). GenomeTester4: a toolkit for performing basic set operations - union, intersection and complement on k-mer lists. GigaScience, 4 (1), 58. doi:10.1186/s13742-015-0097-y
Katche, E., Quezada-Martinez, D., Katche, E. I., Vasquez-Teuber, P., & Mason, A. S. (2019). Interspecific Hybridization for Brassica Crop Improvement. Crop Breeding, Genetics and Genomics, 1 (1), e190007. doi:10.20900/cbgg20190007
Kliebenstein, D. J. (2017). Quantitative Genetics and Genomics of Plant Resistance to Insects. In Annual Plant Reviews online (pp. 235-262).
Klingler, J. P., Nair, R. M., Edwards, O. R., & Singh, K. B. (2009). A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot, 60 (14), 4115-4127. doi:10.1093/jxb/erp244
Kourelis, J., & van der Hoorn, R. A. L. (2018). Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell, 30 (2), 285-299. doi:10.1105/tpc.17.00579
Kumar, S. (2017). Assessment of avoidable yield losses in crop brassicas by insect-pests. Journal of entomology and zoology studies, 5 , 1814-1818.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25 (14), 1754-1760. doi:10.1093/bioinformatics/btp324
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics25 , 2078– 2079.
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Prepr. arXiv : 1303.3997.
Little, D., Gouhier-Darimont, C., Bruessow, F., & Reymond, P. (2007). Oviposition by pierid butterflies triggers defense responses inArabidopsis . Plant Physiol., 143 , 784-800.
Liu, S., Yeh, C. T., Tang, H. M., Nettleton, D., & Schnable, P. S. (2012). Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 7 (5), e36406. doi:10.1371/journal.pone.0036406
Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., . . . Wan, J. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology, 33 (3), 301-305. doi:10.1038/nbt.3069
Lv, H., Fang, Z., Yang, L., Zhang, Y., & Wang, Y. (2020). An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Horticulture Research, 7 (1), 34. doi:10.1038/s41438-020-0257-9
Lyons, E., Pedersen, B., Kane, J., Alam, M., Ming, R., Tang, H., . . . Freeling, M. (2008). Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol, 148 (4), 1772-1781. doi:10.1104/pp.108.124867
Monteiro, F., & Nishimura, M. T. (2018). Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 56 (1), 243-267. doi:10.1146/annurev-phyto-080417-045817
Nicolis, V., & Venter, E. (2018). Silencing of a Unique Integrated Domain Nucleotide-Binding Leucine-Rich Repeat Gene in Wheat Abolishes Diuraphis noxia Resistance. Mol Plant Microbe Interact, 31 (9), 940-950. doi:10.1094/mpmi-11-17-0262-r
Nombela, G., Williamson, V. M., & Muñiz, M. (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact, 16 (7), 645-649. doi:10.1094/mpmi.2003.16.7.645
Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144 (1), 31-43. doi:10.1017/S0021859605005708
Palma, K., Thorgrimsen, S., Malinovsky, F. G., Fiil, B. K., Nielsen, H. B., Brodersen, P., . . . Mundy, J. (2010). Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor.PLoS Pathog, 6 (10), e1001137. doi:10.1371/journal.ppat.1001137
Pashalidou, F. G., Fatouros, N. E., Loon, J. J. A. v., Dicke, M., & Gols, R. (2015). Plant-mediated effects of butterfly egg deposition on subsequent caterpillar and pupal development, across different species of wild Brassicaceae. Ecological Entomology, 40 (4), 444-450.
Prodhomme, C., Esselink, D., Borm, T., Visser, R. G. F., van Eck, H. J., & Vossen, J. H. (2019). Comparative Subsequence Sets Analysis (CoSSA) is a robust approach to identify haplotype specific SNPs; mapping and pedigree analysis of a potato wart disease resistance gene Sen3.Plant Methods, 15 , 60. doi:10.1186/s13007-019-0445-5
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26 (6), 841-842. doi:10.1093/bioinformatics/btq033
R Core Team (2021). R: a language and environment for statistical computing. https://www.r-project.org/.
Reymond, P. (2021). Receptor kinases in plant responses to herbivory.Curr. Opin. Biotechnol., 70 , 143-150. doi:10.1016/j.copbio.2021.04.004
Ross, S., Giglione, C., Pierre, M., Espagne, C., & Meinnel, T. (2005). Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol, 137 (2), 623-637. doi:10.1104/pp.104.056861
Rossi, M., Goggin, F. L., Milligan, S. B., Kaloshian, I., Ullman, D. E., & Williamson, V. M. (1998). The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A, 95 (17), 9750-9754. doi:10.1073/pnas.95.17.9750
Ryan, S. F., Lombaert, E., Espeset, A., Vila, R., Talavera, G., Dinca, V., . . . Shoemaker, D. (2019). Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc Natl Acad Sci U S A, 116 (40), 20015-20024. doi:10.1073/pnas.1907492116
Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B., & Chen, J. Q. (2019). Revisiting the Origin of Plant NBS-LRR Genes. Trends Plant Sci, 24 (1), 9-12. doi:10.1016/j.tplants.2018.10.015
Shapiro, A. M., & De Vay, J. E. (1987). Hypersensitivity reaction ofBrassica nigra L. (Cruciferae) kills eggs of Pierisbutterflies (Lepidoptera, Pieridae). Oecologia, 71 (4), 631-632.
Snoeck, S., Guayazan-Palacios, N., & Steinbrenner, A. D. (2022). Molecular tug-of-war: Plant immune recognition of herbivory. Plant Cell, 34 (5), 1497-1513. doi:10.1093/plcell/koac009
Stahl, E., Brillatz, T., Ferreira Queiroz, E., Marcourt, L., Schmiesing, A., Hilfiker, O., . . . Reymond, P. (2020). Phosphatidylcholines fromPieris brassicae eggs activate an immune response inArabidopsis . eLife, 9 , e60293. doi:10.7554/eLife.60293
Steinbrenner, A. D., Muñoz-Amatriaín, M., Chaparro, A. F., Aguilar-Venegas, J. M., Lo, S., Okuda, S., . . . Schmelz, E. A. (2020). A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proceedings of the National Academy of Sciences, 117 (49), 31510-31518. doi:10.1073/pnas.2018415117
Stuart, J. J., Chen, M. S., Shukle, R., & Harris, M. O. (2012). Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol, 50 , 339-357. doi:10.1146/annurev-phyto-072910-095255
Sun, M., Voorrips, R. E., Van’t Westende, W., van Kaauwen, M., Visser, R. G. F., & Vosman, B. (2020). Aphid resistance in Capsicum maps to a locus containing LRR-RLK gene analogues. Theor Appl Genet, 133 (1), 227-237. doi:10.1007/s00122-019-03453-7
Tamiru, A., Khan, Z. R., & Bruce, T. J. A. (2015). New directions for improving crop resistance to insects by breeding for egg induced defence. Curr. Opin. Insect Sci. doi:10.1016/j.cois.2015.02.011
Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., . . . Yasui, H. (2014). Map-based Cloning and Characterization of a Brown Planthopper Resistance Gene BPH26 from Oryza sativa L. ssp. indica Cultivar ADR52. Scientific Reports, 4 (1), 5872. doi:10.1038/srep05872
Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu Rev Phytopathol, 54 , 419-441. doi:10.1146/annurev-phyto-080615-100204
Turcotte, M. M., Turley, N. E., & Johnson, M. T. J. (2014). The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol, 204 (3), 671-681. doi:10.1111/nph.12935
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R., & Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences , 118(2), e2023989118._https://doi.org/10.1073/pnas.2023989118
Wang, H., Lu, Y., Liu, P., Wen, W., Zhang, J., Ge, X., & Xia, Y. (2013). The ammonium/nitrate ratio is an input signal in the temperature-modulated, SNC1-mediated and EDS1-dependent autoimmunity of nudt6-2 nudt7. Plant J, 73 (2), 262-275. doi:10.1111/tpj.12032
Wang, W., Chen, L., Fengler, K., Bolar, J., Llaca, V., Wang, X., . . . Ma, J. (2021). A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat Commun, 12 (1), 6263. doi:10.1038/s41467-021-26554-8
Whitehead, S. R., Turcotte, M. M., & Poveda, K. (2017). Domestication impacts on plant–herbivore interactions: a meta-analysis.Philosophical Transactions of the Royal Society B: Biological Sciences, 372 (1712), 20160034. doi:doi:10.1098/rstb.2016.0034
Wiklund, C. (1984). Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia, 63 , 23-29.
Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A. et al. (2013) From fastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics43 , 11.10.1– 11.10.33.
Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., . . . He, G. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci U S A, 113 (45), 12850-12855. doi:10.1073/pnas.1614862113