References
1. Baldrian, P. (2006). Fungal laccases-occurrence and properties.FEMS Microbiology Reviews , 30, 215-242.
2. Riva, S. (2006). Laccases: Blue enzymes for green chemistry.Trends in Biotechnology , 5, 219-225.
3. Giardina, P., & Sannia, G. (2015). Laccases: old enzymes with a promising future. Cellular and Molecular Life Sciences , 72, 855-856.
4. Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C.E., Herrera de los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldán, M.A, & Valdez-Cruz, N.A. (2019). Laccases: structure, function, and potential application in water bioremediation.Microbial Cell Factories , 18, 200.
5. Sekretaryova, A., Jones, S.M., & Solomon, E.I. (2019). O2 Reduction to water by high potential multicopper oxidases: Contributions of the T1 copper site potential and the local environment of the trinuclear copper cluster. Journal of the American Chemical Society , 141, 11304-11314.
6. Makwana, S.K., Panchal, R.R., & Deshmukh, K.C. (2020). Fungal laccase a review on production and its potential application for human welfare. International Journal of Trend in Research and Development , 5, 1353-1358.
7. Brugnari, T., Braga, D.M., Souza-Almeida dos Santos, C., Torres, B.H.C., Modkovski, T.A., Haminiuk, C.W.I., & Maciel, G.M. (2021). Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview. Bioresources and Bioprocesses , 8, 131.
8. Osma, J.F., Toca-Herrera, J.L, & Rodriguez-Couto, S. (2011). Cost analysis in laccase production. Journal of Environmental Management , 92, 2907-2912.
9. Zerva, A., Simić, S., Topakas, E., & Nikodinovic-Runic, J. (2019). Applications of microbial laccases: Patent review of the past decade (2009-2019). Catalysts , 9, 1023.
10. Kiyomuhimbo, H.D., & Brink, H.G. (2023). Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon , 9, e13156.
11. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N., & Parra-Saldívar, R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review.International Journal of Biological Macromolecules , 181, 683-696.
12. Zhou, W.T., Zhang, W.X., & Cai, Y.P. (2021). Laccase immobilization for water purification: a comprehensive review. Chemical Engineering Journal , 403, 126272.
13. Boudrant, J., Woodley, J.M., & Fernández-Lafuente, R. (2020). Parameters necessary to define an immobilized enzyme preparation.Process Biochemistry , 90, 66–80.
14. Al-Maqdi, K.A., Elmerhi, N., Athamneh, K., Bilal, M., Alzamly, A., Ashraf, S.S., & Shah, I. (2021). Challenges and recent advances in enzyme-mediated wastewater remediation-a review. Nanomaterials , 11, 3124.
15. Ahmad, S., Sebai, W., Belleville, M.P., Brun, N., Galarneau, A., & Sanchez-Marcano, J. (2020). Enzymatic degradation of micropollutants in water: the case of tetracycline degradation by enzymes immobilized on monoliths. Chemical Engineering Transactions , 79, 403-408.
16. Ladole, M.R., Pokale, P.B., Patil, S.S., Belokar, P.G., & Pandit, A.B. (2020). Laccase immobilized peroxidase mimicking magnetic metal organic frameworks for industrial dye degradation. Bioresource Technology , 317, 124035.
17. Lopez-Barbosa, N., Florez, S.L., Cruz, J.C., Ornelas-Soto, N., & Osma, J.F. (2020). Congo red decolorization using textile filters and laccase-based nanocomposites in continuous flow bioreactors.Nanomaterials , 10, 1-17.
18. Yuan, H., Chen, L., Cao, Z., & Hong, F.F. (2020). Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency.Biochemical Engineering Journal , 156, 107501.
19. Zdarta, J., Jankowska, K., Bachosz, K., Kijenska-Gawronska, E., Zgola-Grzeskowiak, A., Kaczorek, E., & Jesionowski, T. (2020). A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: effect of process conditions and catalytic pathways. Catalysis Today , 348, 127-136.
20. Girelli, A.M., Quatrocchi, L., & Scuto, F.R. (2021). Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. Journal of Biotechnology , 337, 8-17.
21. Masjoudi, M., Golgoli, M., Ghobadi Nejad, Z., Sadeghzadeh, S., & Borghei, S.M. (2021). Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere , 263, 128043.
22. Xia, T.T., Feng, M., Liu, C.-L., Liu, C.-Z., & Guo, C. (2021). Efficient phenol degradation by laccase immobilized on functional magnetic nanoparticles in fixed bed reactor under high-gradient magnetic field. Engineering in Life Sciences , 21, 374-381.
23. Yamaguchi, H., & Miyazaki, M. (2021). Laccase aggregates via poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catalysis Science & Technology, 11, 934.
24. George, J., Rajendran, D.S., Venkataraman, S., Rathankumar, A.K., Saikia, K., Muthusamy, S., Singh, I., Singh, I., Sinha, S., Ramkumar, S., Cabana, H., & Vaidyanathan, V.K. (2022). Insolubilization ofTramates versicolor laccase as cross-linked enzyme aggregates for the remediation of trace organic contaminants from municipal wastewater.Envrionmental Research , 209, 112882.
25. Jankowska, K., Su, Z., Zdarta, J., Jesionowski, T., & Pinelo, M. (2022). Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers. Journal of Hazardous Materials , 436, 129071.
26. Lassouane, F., Aït-Amar, H., & Rodriguez-Couto, S. (2022). High BPA removal by immobilized crude laccase in a batch fluidized bed bioreactor. Biochemical Engineering Journal , 184, 108489.
27. Mehandia, S., Ahmad, S., Sharma, S.C., & Arya, S.K. (2022). Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: An ecofriendly approach. Journal of Water Process Engineering, 47, 102662.
28. Shen, Y.S., Yao, X.H., He, C.-X., Hu, R.-Z., Yang, J.-X., Zhang, D.-Y., & Chen. T. (2022). A wood-based fluid catalytic reactor with directional channels and porous inner walls for efficient degradation of 4-NP by immobilized laccase. Industrial Crops and Products , 178, 114589.
29. Sotelo, L.D., Sotelo, D.C., Ornelas-Soto, N., Cruz, J.C., & Osma, J.F. (2022). Comparison of acetaminophen degradation by laccases immobilized by two different methods via a continuous flow microreactor process scheme. Membranes , 12, 298.
30. Trivedi, J., & Chhaya, U. (2022). Bioremediation of bisphenol A found in industrial wastewater using Trametes versicolor (TV) laccase nanoemulsion-based bead organogel in packed bed reactor.Water Environment Research , 94, e10786.
TABLE 1. Laccase immobilisation methods with their advantages and drawbacks.