References
  1. Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, and M. J. Deen, “A novel cloud-based framework for the elderly healthcare services using digital twin,” IEEE Access, vol. 7, pp. 49088–49101, 2019.
  2. S. Gahlot, S. R. N. Reddy, and D. Kumar, “Review of smart health monitoring approach with survey analysis and proposed framework,” IEEE Internet Things J., vol. 6, no. 2, pp. 2116–2127, Apr. 2019.
  3. N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Nov. 2017, pp. 1–5.
  4. T. Ruohomaki, E. Airaksinen, P. Huuska, O. Kesaniemi, M. Martikka, and J. Suomisto, “Smart city platform enabling digital twin,” in Proc. Int. Conf. Intell. Syst. (IS), Sep. 2018, pp. 155–161.
  5. Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE access, 8, 108952-108971.
  6. K. Sivalingam, M. Sepulveda, M. Spring, and P. Davies, “A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective,” in Proc. 2nd Int. Conf. Green Energy Appl. (ICGEA), Mar. 2018, pp. 197–204.
  7. H. Pargmann, D. Euhausen, and R. Faber, “Intelligent big data processing for wind farm monitoring and analysis based on cloud-technologies and digital twins: A quantitative approach,” in Proc. IEEE 3rd Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2018, pp. 233–237.
  8. Bolton, R.N., McColl-Kennedy, J.R., Cheung, L., Gallan, A., Orsingher, C., Witell, L. and Zaki, M. (2018), ‘Customer experience challenges: bringing together digital, physical and social realms’, Journal of Service Management, Vol. 29 No. 5, pp. 776-808. https://doi.org/10.1108/JOSM-04-2018-0113.
  9. Eder, M.A., & Chen, X. (2020). FASTIGUE: A computationally efficient approach for simulating discrete fatigue crack growth in large-scale structures. Engineering Fracture Mechanics, 233, [107075]. https://doi.org/10.1016/j.engfracmech.2020.107075.
  10. Chen, X., & Eder, M.A. (2020). A Critical Review of Damage and Failure of Composite Wind Turbine Blade Structures. IOP Conference Series: Materials Science and Engineering, 942(1), [012001]. https://doi.org/10.1088/1757-899X/942/1/012001.
  11. Shihavuddin ASM, Chen X, Fedorov V, Christensen AN, Riis NAB, Branner K, Dahl AB, Paulsen RR. 2019. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis. Energies. 12(4). https://doi.org/10.3390/en12040676.
  12. Benzon, H.-H.; Chen, X.; Belcher, L.; Castro, O.; Branner, K.; Smit, J. An Operational Image-Based Digital Twin for Large-Scale Structures. Appl. Sci. 2022, 12, 3216. https://doi.org/10.3390/app12073216.
  13. M. Mandirola, C. Casarotti, S. Peloso, I. Lanese, E. Brunesi, I. Senaldi. Use of UAS for damage inspection and assessment of bridge infrastructures, International Journal of Disaster Risk Reduction, Volume 72, 2022, 102824, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2022.102824.
  14. Guido Morgenthal, Norman Hallermann, Jens Kersten, Jakob Taraben, Paul Debus, Marcel Helmrich, Volker Rodehorst. Framework for automated UAS-based structural condition assessment of bridges, Automation in Construction, Volume 97, 2019, Pages 77-95, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2018.10.006.
  15. Hammad, A.W.A.; da Costa, B.B.F.; Soares, C.A.P.; Haddad, A.N. The Use of Unmanned Aerial Vehicles for Dynamic Site Layout Planning in Large-Scale Construction Projects. Buildings 2021, 11, 602. https://doi.org/10.3390/buildings11120602.
  16. Kyungil Kong, Kirsten Dyer, Christopher Payne, Ian Hamerton, Paul M. Weaver. Progress and Trends in Damage Detection Methods, Maintenance, and Data-driven Monitoring of Wind Turbine Blades – A Review, Renewable Energy Focus, 2022, ISSN 1755-0084, https://doi.org/10.1016/j.ref.2022.08.005.
  17. Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed and Accuracy of Object Detection.” ArXiv:2004.10934 [Cs, Eess], April 22, 2020. https://arxiv.org/abs/2004.10934.
  18. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. ”You only look once: Unified, real-time object detection.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. Las Vegas, NV: USA: IEEE, 2016. https://doi.org/10.1109/CVPR.2016.91.
  19. Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; NanoCode012; Xie, T.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; et al. Ultralytics/yolov5: V4.0-nn.SiLU() Activations, Weights & Biases Logging, PyTorch Hub Integration (v4.0). 2021. Available online: https://github.com/ultralytics/yolov5 (accessed on 13 February 2021).
  20. H.D. Cheng, X.H. Jiang, Y. Sun, Jingli Wang. Color image segmentation: advances and prospects, Pattern Recognition, Volume 34, Issue 12, 2001, Pages 2259-2281, ISSN 0031-3203, https://doi.org/10.1016/S0031-3203(00)00149-7.
  21. F Kurugollu, B Sankur, A.E Harmanci. Color image segmentation using histogram multithresholding and fusion, Image and Vision Computing, Volume 19, Issue 13, 2001, Pages 915-928, ISSN 0262-8856, https://doi.org/10.1016/S0262-8856(01)00052-X.
  22. Javad Baqersad, Peyman Poozesh, Christopher Niezrecki, Peter Avitabile. Photogrammetry and optical methods in structural dynamics – A review. Mechanical Systems and Signal Processing, Volume 86, Part B, 2017, Pages 17-34, ISSN 0888-3270, https://doi.org/10.1016/j.ymssp.2016.02.011.
  23. Remondino, Fabio, et al. UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. International archives of the photogrammetry, remote sensing and spatial information sciences, 2011, 38.1: C22.
  24. Bentley Institute Inc. (2021) “ContextCapture: 4D Digital Context for Digital Twins”. United States.
  25. Chen, X., Semenov, S., McGugan, M., Madsen, S. H., Yeniceli, S. C., Berring, P., & Branner, K. (2021). Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoring. Composites - Part A: Applied Science and Manufacturing, 140, [106189]. https://doi.org/10.1016/j.compositesa.2020.106189