REFERENCES
[1] Rader, R. A. (2008). (Re)defining biopharmaceutical. Nat. Biotechnol. 26, 743–751. doi:10.1038/nbt0708-743
[2] Walsh, G., Walsh, E. (2022). Biopharmaceutical benchmarks 2022.Nat. Biotechnol. 40, 1722–1760. doi:10.1038/s41587-022-01582-x
[3] Birch, J. R., Onakunle, Y. (2005). Biopharmaceutical proteins: opportunities and challenges. Methods Mol. Biol. 308, 1–16. doi:10.1385/1-59259-922-2:001 [4] Jayapal, K. P., Wlaschin, K. F., Hu, W. S., Yap, M. G. S. (2007). Recombinant protein therapeutics from CHO cells—20 years and counting. Chem. Eng. Prog. 103, 40–47. [5] De Jesus, M., Wurm, F. M. (2011). Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.Eur. J. Pharm. Biopharm. 78, 184–188. doi:10.1016/j.ejpb.2011.01.005 [6] Fischer, S., Handrick, R., Otte, K. (2015). The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv. 33, 1878–1896. doi:10.1016/j.biotechadv.2015.10.015 [7] Xu, X., Nagarajan, H., Lewis, N. E., Pan, S., Cai, Z., Liu, X., et al. (2011). The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29, 735–741. doi:10.1038/nbt.1932 [8] Wang, X., Kawabe, Y., Kato, R., Hada, T., Ito, A., Yamana, Y., et al. (2017). Accumulative scFv-Fc antibody gene integration into thehprt chromosomal locus of Chinese hamster ovary cells. J. Biosci. Bioeng. 124, 583–590. doi:10.1016/j.jbiosc.2017.05.017. [9] Kawabe, Y., Komatsu, S., Komatsu, S., Murakami, M., Ito, A., Sakuma, T., et al. (2018). Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. J. Biosci. Bioeng. 125, 599–605. doi:10.1016/j.jbiosc.2017.12.003 [10] Noh, S. M., Sathyamurthy, M., Lee, G. M. (2013). Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr. Opin. Chem. Eng. 2, 391–397. doi:10.1016/j.coche.2013.08.002 [11] Donaldson, J. S., Dale, M. P., Rosser, S. J. (2021). Decoupling growth and protein production in CHO cells: A targeted approach.Front. Bioeng. Biotechnol. 9, 658325. doi:10.3389/fbioe.2021.658325 [12] Gatz, C., Lenk, I. (1998). Promoters that respond to chemical inducers. Trends Plant. Sci. 3, 352–358. doi:10.1016/S1360-1385(98)01287-4 [13] Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., Hillen, W. (2000). Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. U. S. A. 97, 7963–7968. doi:10.1073/pnas.130192197 [14] Xu, X., Qi, L. S. (2019). A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34–47. doi:10.1016/j.jmb.2018.06.037 [15] Ito, A., Okamoto, N., Yamaguchi, M., Kawabe, Y., Kamihira, M. (2012). Heat-inducible transgene expression with transcriptional amplification mediated by a transactivator. Int. J. Hyperthermia.28, 788–798. doi:10.3109/02656736.2012.738847 [16] Yamaguchi, M., Ito, A., Okamoto, N., Kawabe, Y., Kamihira, M. (2012). Heat-inducible transgene expression system incorporating a positive feedback loop of transcriptional amplification for hyperthermia-induced gene therapy. J. Biosci. Bioeng. 114, 460–465. doi:10.1016/j.jbiosc.2012.05.006 [17] Yamamoto, H., Kawabe, Y., Ito, A., Kamihira, M. (2012). Enhanced liver functions in mouse hepatoma cells by induced overexpression of liver-enriched transcription factors. Biochem. Eng. J. 60, 67–73. doi:10.1016/j.bej.2011.10.004 [18] Yamaguchi, M., Ito, A., Ono, A., Kawabe, Y., Kamihira, M. (2014). Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles. ACS Synth. Biol. 3, 273–279. doi:10.1021/sb4000838 [19] Ono, A., Ito, A., Suzuki, T., Yamaguchi, M., Kawabe, Y., Kamihira, M. (2015). DNA damage-responsive transgene expression mediated by the p53 promoter with transcriptional amplification. J. Biosci. Bioeng. 120, 463–466. doi:10.1016/j.jbiosc.2015.02.009 [20] Ono, A., Ito, A., Sato, T., Yamaguchi, M., Suzuki, T., Kawabe, Y., et al. (2017). Hypoxia-responsive transgene expression system using RTP801 promoter and synthetic transactivator fused with oxygen-dependent degradation domain. J. Biosci. Bioeng. 124, 115–124. doi:10.1016/j.jbiosc.2017.02.012 [21] Ito, A., Teranishi, R., Kamei, K., Yamaguchi, M., Ono, A., Masumoto, S., et al. (2019). Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J. Biosci. Bioeng. 128, 355–364. doi:10.1016/j.jbiosc.2019.03.008 [22] Kitano, H., Nagae, Y., Kawabe, Y., Ito, A., Kamihira, M. (2021). Development of a genetically modified hepatoma cell line with heat-inducible high liver function. Cytotechnology 73, 353–362. doi:10.1007/s10616-021-00457-4 [23] Masumoto, S., Ono, A., Ito, A., Kawabe, Y., Kamihira, M. (2021). Hypoxia-responsive expression of vascular endothelial growth factor for induction of angiogenesis in artificial three-dimensional tissues. J. Biosci. Bioeng. 132, 399–407. doi:10.1016/j.jbiosc.2021.06.010 [24] Kitano, H., Kawabe, Y., Kamihira, M. (2022). HepG2-based designer cells with heat-inducible enhanced liver functions.Cells 11, 1194. doi:10.3390/cells11071194
[25] Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., et al. (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327. doi:10.1093/nar/27.22.4324
[26] Tian, Y., James, S., Zuo, J., Fritzsch, B., Beisel, K. W. (2006). Conditional and inducible gene recombineering in the mouse inner ear. Brain Res. 1091, 243–254. doi:10.1016/j.brainres.2006.01.040 [27] Gerety, S. S., Breau, M. A., Sasai, N., Xu, Q., Briscoe, J., Wilkinson, D.G. (2013). An inducible transgene expression system for zebrafish and chick. Development 140, 2235–2243. doi:10.1242/dev.091520 [28] Akerberg, A. A., Stewart, S., Stankunas, K. (2014). Spatial and temporal control of transgene expression in zebrafish. PLoS One9, e92217. doi:10.1371/journal.pone.0092217 [29] Kawabe, Y., Shimomura, T., Huang, S., Imanishi, S., Ito, A., Kamihira, M. (2016). Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors. Biotechnol. Bioeng. 113, 1600–1610. doi:10.1002/bit.25923 [30] Kamihira, M., Ono, K., Esaka, K., Nishijima, K., Kigaku, R., Komatsu, H., et al. (2005). High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J. Virol. 79, 10864–10874. doi:10.1128/JVI.79.17.10864-10874.2005 [31] Kamihira, M., Kawabe, Y., Shindo, T., Ono, K., Esaka, K., Yamashita, T., et al. (2009). Production of chimeric monoclonal antibodies by genetically manipulated chickens. J Biotechnol.141, 18–25. https://doi.org/10.1016/j.jbiotec.2009.02.022 [32] Feil, R., Wagner, J., Metzger, D., Chambon, P. (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757. doi:10.1006/bbrc.1997.7124 [33] Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discov. Today 19, 590–601. doi:10.1016/j.drudis.2013.11.008 [34] Metzger, D., Clifford, J., Chiba, H., Chambon, P. (1995). Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. U. S. A. 92, 6991–6995. doi:10.1073/pnas.92.15.6991 [35] Moriyama, T., Yoneda, Y., Oka, M., Yamada, M. (2020). Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci. Rep. 10, 18640. doi:10.1038/s41598-020-75631-3 [36] Makkerh, J. P., Dingwall, C., Laskey, R. A. (1996). Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027. doi:10.1016/s0960-9822(02)00648-6 [37] Liu, P., Luk, K., Shin, M., Idrizi, F., Kwok, S., Roscoe, B., et al. (2019). Enhanced Cas12a editing in mammalian cells and zebrafish.Nucleic Acids Res. 47, 4169–4180. doi:10.1093/nar/gkz184 [38] Stone, A. T., Dhara, V. G., Naik, H. M., Aliyu, L., Lai, J., Jenkins, J., et al. (2021). Chemical speciation of trace metals in mammalian cell culture media: looking under the hood to boost cellular performance and product quality. Curr. Opin. Biotechnol. 71, 216–224. doi:10.1016/j.copbio.2021.08.004 [39] Hong, J. K., Choi, D. H., Park, S. Y., Silberberg, Y. R., Shozui, F., Nakamura, E., et al. (2022). Data-driven and model-guided systematic framework for media development in CHO cell culture.Metab. Eng. 73, 114–123. doi:10.1016/j.ymben.2022.07.003 [40] Qi, Z., Wilkinson, M. N., Chen, X., Sankararaman, S., Mayhew, D., Mitra, R. D. (2017). An optimized, broadly applicablepiggyBac transposon induction system. Nucleic Acids Res.45, e55. doi:10.1093/nar/gkw1290 [41] Zuo, J., Niu, Q. W., Chua, N. H. (2000). Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273. doi:10.1046/j.1365-313x.2000.00868.x [42] Yamano-Adachi, N., Arishima, R., Puriwat, S., Omasa, T. (2020). Establishment of fast-growing serum-free immortalised cells from Chinese hamster lung tissues for biopharmaceutical production. Sci. Rep.10, 17612. doi:10.1038/s41598-020-74735-0 [43] Kawabe, Y., Kamihira, M. (2022). Novel cell lines derived from Chinese hamster kidney tissue. PLoS One 17, e0266061. doi:10.1371/journal.pone.0266061