References
1.Belhadi, D., Baied, M. E., Mulier, G., Malvy, D., Mentré, F., & Laouénan, C. (2022). The number of cases, mortality and treatments of viral hemorrhagic fevers: A systematic review. PLOS Neglected Tropical Diseases, 16(10), e0010889. https://doi.org/10.1371/journal.pntd.0010889
2. Hoogstraal H. (1979). The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. Journal of medical entomology , 15 (4), 307–417. https://doi.org/10.1093/jmedent/15.4.307
3.Swanepoel, R., Shepherd, A. J., Leman, P., Shepherd, S. P., McGillivray, G., Erasmus, M. J., Searle, L., & Gill, D. (1987). Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in Southern Africa. American Journal of Tropical Medicine and Hygiene , 36 (1), 120–132. https://doi.org/10.4269/ajtmh.1987.36.120
4.Whitehouse, C. A. (2004). Crimean?Congo hemorrhagic fever.Antiviral Research , 64 (3), 145–160. https://doi.org/10.1016/j.antiviral.2004.08.001
5.Elaldi, N., Bodur, H., Ascioglu, S., Celikbas, A. K., Özkurt, Z., Vahaboglu, H., Leblebicioglu, H., Yilmaz, N., Engin, A., Şencan, M., Aydin, K., Dokmetas, I., Çevik, M. A., Dokuzoğuz, B., Tasyaran, M. A., Öztürk, R., Bakir, M., & Uzun, R. (2009). Efficacy of oral ribavirin treatment in Crimean-Congo haemorrhagic fever: A quasi-experimental study from Turkey. Journal of Infection, 58(3), 238–244. https://doi.org/10.1016/j.jinf.2009.01.014
6.Swanepoel, R., Gill, D. E., Shepherd, A. J., Leman, P. A., Mynhardt, J. H., & Harvey, S. (1989). The clinical pathology of Crimean-Congo hemorrhagic fever. Reviews of infectious diseases , 11 Suppl 4 , S794–S800. https://doi.org/10.1093/clinids/11.supplement_4.s794
7.Ergonul, O., Tunçbilek, S., Baykam, N., Celikbas, A. K., & Dokuzoğuz, B. (2006). Evaluation of Serum Levels of Interleukin (IL)–6, IL‐10, and Tumor Necrosis Factor–α in Patients with Crimean‐Congo Hemorrhagic Fever. The Journal of Infectious Diseases, 193(7), 941–944. https://doi.org/10.1086/500836
8.Ergonul O. (2008). Treatment of Crimean-Congo hemorrhagic fever.Antiviral research , 78 (1), 125–131. https://doi.org/10.1016/j.antiviral.2007.11.002
9. Almayahi, Z. K., Kindi, H. A., Jabri, I. H. S. H. A., Shaqsi, N. H. K. A., Hattali, N. A., Hattali, A. A., Quyoodhi, B. A., & Dhuhli, K. A. (2022). Challenges in Diagnosis of Crimean-Congo Hemorrhagic Fever. Infectious Diseases in Clinical Practice, 30(2). https://doi.org/10.1097/ipc.0000000000001108
10.Raabe V. N. (2020). Diagnostic Testing for Crimean-Congo Hemorrhagic Fever.Journal of clinical microbiology , 58 (4), e01580-19. https://doi.org/10.1128/JCM.01580-19
11. Mayne, E. S., George, J. A., & Louw, S. (2023). Assessing Biomarkers in Viral Infection. Advances in experimental medicine and biology , 1412 , 159–173. https://doi.org/10.1007/978-3-031-28012-2_8
12.Neogi, U., Elaldi, N., Appelberg, S., Ambikan, A. T., Kennedy, E. V., Dowall, S. D., Bagci, B., Gupta, S., Murillo, J. R., Akusjärvi, S. S., Monteil, V., Marko-Varga, G., Benfeitas, R., Banerjea, A. C., Weber, F., Hewson, R., & Mirazimi, A. (2022). Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. eLife, 11. https://doi.org/10.7554/elife.76071
13.Ak, Ç., Ergönül, Ö. & Gönen, M. A prospective prediction tool for understanding Crimean–Congo haemorrhagic fever dynamics in Turkey. Clin. Microbiol. Infect. 26, 123-e1 (2020).
14.Nyamundanda, G., Gormley, I.C., Fan, Y. et al. MetSizeR: selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinformatics 14, 338 (2013). https://doi.org/10.1186/1471-2105-14-338
15.Nagana Gowda, G. A., & Raftery, D. (2014). Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Analytical chemistry, 86(11), 5433–5440. https://doi.org/10.1021/ac5005103
16.McHugh, R. K., Votaw, V. R., Sugarman, D. E., & Greenfield, S. F. (2018). Sex and gender differences in substance use disorders. Clinical psychology review, 66, 12–23. https://doi.org/10.1016/j.cpr.2017.10.012
17.Markley, J. L., Brüschweiler, R., Edison, A. S., Eghbalnia, H. R., Powers, R., Raftery, D., & Wishart, D. S. (2017). The future of NMR-based metabolomics. Current opinion in biotechnology, 43, 34–40. https://doi.org/10.1016/j.copbio.2016.08.001
18.Emwas, A. M. (2015). The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. In Methods in molecular biology (pp. 161–193). Springer Science+Business Media. https://doi.org/10.1007/978-1-4939-2377-9_13
19. Costa dos Santos Junior, G., Pereira, C. M., Kelly da Silva Fidalgo, T., & Valente, A. P. (2020). Saliva NMR-based metabolomics in the war against COVID-19. Analytical chemistry, 92(24), 15688-15692.
20.Munshi, S. U., Rewari, B. B., Bhavesh, N. S., & Jameel, S. (2013). Nuclear magnetic resonance based profiling of biofluids reveals metabolic dysregulation in HIV-infected persons and those on anti-retroviral therapy. PloS one, 8(5), e64298. https://doi.org/10.1371/journal.pone.0064298
21.El-Bacha, T., Struchiner, C. J., Cordeiro, M. T., Almeida, F. C. L., Marques, E. T. A., & Da Poian, A. T. (2016). 1 H Nuclear Magnetic Resonance Metabolomics of Plasma Unveils Liver Dysfunction in Dengue Patients. Journal of Virology, 90(16), 7429–7443. https://doi.org/10.1128/jvi.00187-16
22.Shrinet, J., Shastri, J. S., Gaind, R., Bhavesh, N. S., & Sunil, S. (2016). Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions. Scientific reports , 6 , 36833. https://doi.org/10.1038/srep36833
23.Fu, X., Wang, Z., Li, L., Dong, S., Li, Z., Zhenzuo, J., Wang, Y., & Shui, W. (2016b). Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches. Scientific Reports, 6(1). https://doi.org/10.1038/srep29680
24..Wang, Z., Liang, H., Cao, H., Zhang, B., Li, J., Wang, W., Qin, S., Wang, Y., Xuan, L., Lai, L., & Shui, W. (2019). Efficient ligand discovery from natural herbs by integrating virtual screening, affinity mass spectrometry and targeted metabolomics. Analyst, 144(9), 2881–2890. https://doi.org/10.1039/c8an02482k
25.Kotb, M., Mudd, S. H., Mato, J. M., Geller, A. M., Kredich, N. M., Chou, J. Y., & Cantoni, G. L. (1997). Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends in Genetics, 13(2), 51–52. doi:10.1016/s0168-9525(97)01013-5
26.Karakus, N., Duygu, F., Rustemoglu, A., & Yigit, S. (2022). Methylene-tetrahydrofolate reductase gene C677T and A1298C polymorphisms as a risk factor for Crimean-Congo hemorrhagic fever. Nucleosides, Nucleotides & Nucleic Acids , 41 (9), 878–890. https://doi.org/10.1080/15257770.2022.2085296
27..Byszewska, M., Śmietański, M., Purta, E., & Bujnicki, J. M. (2014). RNA methyltransferases involved in 5′ cap biosynthesis. RNA Biology, 11(12), 1597–1607. https://doi.org/10.1080/15476286.2015.1004955
28.Brecher, M., Chen, H. S., Liu, B., Banavali, N. K., Jones, S., Zhang, J., Li, Z., Kramer, L. D., & Li, H. (2015b). Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase. PLOS ONE, 10(6), e0130062. https://doi.org/10.1371/journal.pone.0130062
29.Babizhayev, M. A., Seguin, M. C., Gueyne, J., Evstigneeva, R. P., Ageyeva, E. A., & Zheltukhina, G. A. (1994). L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. The Biochemical journal, 304 ( Pt 2)(Pt 2), 509–516.https://doi.org/10.1042/bj3040509
30.Valle, C., Martin, B., Ferron, F., Roig-Zamboni, V., Desmyter, A., Debart, F., Canard, B., Coutard, B., & Decroly, E. (2021). First insights into the structural features of Ebola virus methyltransferase activities. Nucleic Acids Research , 49 (3), 1737–1748. https://doi.org/10.1093/nar/gkaa1276
31.Henderson, J., Lowe, J. K., & Barankiewicz, J. (1977). Purine and Pyrimidine Metabolism: Pathways, Pitfalls and Perturbations. In Novartis Foundation Symposium (pp. 3–21). Wiley. https://doi.org/10.1002/9780470720301.ch2
32.Tong, X., Smith, J. N., Bukreyeva, N., Koma, T., Manning, J. C., Kalkeri, R., Kwong, A. D., & Paessler, S. (2018). Merimepodib, an IMPDH inhibitor, suppresses replication of Zika virus and other emerging viral pathogens. Antiviral Research, 149, 34–40. https://doi.org/10.1016/j.antiviral.2017.11.004
33.Tchesnokov, E. P., Bailey-Elkin, B. A., Mark, B. L., & Götte, M. (2020). Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein. PLOS Neglected Tropical Diseases, 14(6), e0008283. https://doi.org/10.1371/journal.pntd.0008283
34.Espy, N., Pérez-Sautu, U., De Arellano, E. R., Negredo, A., Wiley, M. R., Bavari, S., Menéndez, M., Sánchez-Seco, M. P., & Palacios, G. (2018). Ribavirin Had Demonstrable Effects on the Crimean-Congo Hemorrhagic Fever Virus (CCHFV) Population and Load in a Patient With CCHF Infection. The Journal of Infectious Diseases, 217(12), 1952–1956. https://doi.org/10.1093/infdis/jiy163
35.Robins, R. K., Revankar, G. R., McKernan, P. A., Murray, B. K., Kirsi, J. J., & North, J. A. (1985). The importance of IMP dehydrogenase inhibition in the broad spectrum antiviral activity of ribavirin and selenazofurin. Advances in Enzyme Regulation ,24 , 29–43. https://doi.org/10.1016/0065-2571(85)90068-8
36.Leyssen, P., Balzarini, J., De Clercq, E., & Neyts, J. (2005). The Predominant Mechanism by Which Ribavirin Exerts Its Antiviral Activity In Vitro against Flaviviruses and Paramyxoviruses Is Mediated by Inhibition of IMP Dehydrogenase. Journal of Virology ,79 (3), 1943–1947. https://doi.org/10.1128/jvi.79.3.1943-1947.2005
37.Rothan, H. A., Abdulrahman, A. Y., Khazali, A. S., Rashid, N. N., Chong, T. T., & Yusof, R. (2019). Carnosine exhibits significant antiviral activity against Dengue and Zika virus. Journal of Peptide Science, 25(8). https://doi.org/10.1002/psc.3196
38.Saadah, L. M., Deiab, G. I. A., Al-Balas, Q., & Basheti, I. A. (2020). Carnosine to Combat Novel Coronavirus (nCoV): Molecular Docking and Modeling to Cocrystallized Host Angiotensin-Converting Enzyme 2 (ACE2) and Viral Spike Protein. Molecules, 25(23), 5605. https://doi.org/10.3390/molecules25235605
39.Chon, J., Stover, P. J., & Field, M. S. (2017). Targeting nuclear thymidylate biosynthesis. Molecular Aspects of Medicine, 53, 48–56. https://doi.org/10.1016/j.mam.2016.11.005
40.De Clercq E. (2005). Potential clinical applications of the CXCR4 antagonist bicyclam AMD3100. Mini reviews in medicinal chemistry, 5(9), 805–824. https://doi.org/10.2174/1389557054867075
41.Yen, Y. C., Kong, L. X., Lee, L., Zhang, Y. Q., Li, F., Cai, B. J., & Gao, S. Y. (1985). Characteristics of Crimean-Congo hemorrhagic fever virus (Xinjiang strain) in China. The American journal of tropical medicine and hygiene, 34(6), 1179–1182
42.National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 444266, Maleic Acid. Retrieved August 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Maleic-Acid.
43. Bergeron, M. G., Mayers, P., & Brown, D. T. (1996). Specific effect of maleate on an apical membrane glycoprotein (gp330) in proximal tubule of rat kidneys. American Journal of Physiology-renal Physiology ,271 (4), F908–F916. https://doi.org/10.1152/ajprenal.1996.271.4.f908
44. Berliner, R. W., Kennedy, T. J., & Hilton, J. G. (1950). Effect of maleic acid on renal function. Experimental Biology and Medicine ,75 (3), 791–794.https://doi.org/10.3181/00379727-75-18344