REFERENCES:
Allsteadt, J., Lang, J.W., 1995. Incubation Temperature Affects Body
Size and Energy Reserves of Hatchling American Alligators (Alligator
mississippiensis). Physiological Zoology 68, 76–97.
https://doi.org/10.1086/physzool.68.1.30163919
Angilletta, M.J., Oufiero, C.E., Sears, M.W., 2004. Thermal adaptation
of maternal and embryonic phenotypes in a geographically widespread
ectotherm. International Congress Series, Animals and Environments.
Proceedings of the Third International Conference of Comparative
Physiology and Biochemistry 1275, 258–266.
https://doi.org/10.1016/j.ics.2004.07.038
Ashton, K.G., 2002. Patterns of within-species body size variation of
birds: strong evidence for Bergmann’s rule. Global Ecology and
Biogeography 11, 505–523.
https://doi.org/10.1046/j.1466-822X.2002.00313.x
Ashton, K.G., Feldman, C.R., 2003. Bergmann’s Rule in nonavian reptiles:
turtles follow it, lizards and snakes reverse it. Evolution 57,
1151–1163. https://doi.org/10.1111/j.0014-3820.2003.tb00324.x
Bae, J., Bertucci, E.M., Bock, S.L., Hale, M.D., Moore, J., Wilkinson,
P.M., Rainwater, T.R., Bowden, J.A., Koal, T., PhamTuan, H., Parrott,
B.B., 2021. Intrinsic and extrinsic factors interact during development
to influence telomere length in a long‐lived reptile. Molecular Ecology
mec.16017. https://doi.org/10.1111/mec.16017
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear
Mixed-Effects Models Using lme4. Journal of Statistical Software 67,
1–48. doi:10.18637/jss.v067.i01.
Beamonte‐Barrientos, R., Velando, A., Drummond, H., Torres, R., 2010.
Senescence of Maternal Effects: Aging Influences Egg Quality and Rearing
Capacities of a Long‐Lived Bird. The American Naturalist 175, 469–480.
https://doi.org/10.1086/650726
Blackburn, T.M., Gaston, K.J., Loder, N., 1999. Geographic gradients in
body size: a clarification of Bergmann’s rule. Diversity and
Distributions 5, 165–174.
https://doi.org/10.1046/j.1472-4642.1999.00046.x
Bock, S.L., Hale, M.D., Rainwater, T.R., Wilkinson, P.M., Parrott, B.B.,
2021. Incubation Temperature and Maternal Resource Provisioning, but Not
Contaminant Exposure, Shape Hatchling Phenotypes in a Species with
Temperature-Dependent Sex Determination. The Biological Bulletin 241,
43–54. https://doi.org/10.1086/714572
Bock, S.L., Loera, Y., Johnson, J.M., Smaga, C.R., Haskins, D.L.,
Tuberville, T.D., Singh, R., Rainwater, T.R., Wilkinson, P.M., Parrott,
B.B., 2023. Differential early-life survival contributes to the adaptive
significance of temperature-dependent sex determination in a long-lived
reptile. Preprint. https://doi.org/10.1101/2023.05.24.542140.
Bock, S.L., Lowers, R.H., Rainwater, T.R., Stolen, E., Drake, J.M.,
Wilkinson, P.M., Weiss, S., Back, B., Guillette, L., Parrott, B.B.,
2020. Spatial and temporal variation in nest temperatures forecasts sex
ratio skews in a crocodilian with environmental sex determination.
Proceedings of the Royal Society B: Biological Sciences 287, 20200210.
https://doi.org/10.1098/rspb.2020.0210
Bodensteiner, B.L., Warner, D.A., Iverson, J.B., Milne‐Zelman, C.L.,
Mitchell, T.S., Refsnider, J.M., Janzen, F.J., 2019. Geographic
variation in thermal sensitivity of early life traits in a widespread
reptile. Ecol Evol 9, 2791–2802. https://doi.org/10.1002/ece3.4956
Brown, C.A., Gothreaux, C.T., Green, C.C., 2011. Effects of temperature
and salinity during incubation on hatching and yolk utilization of Gulf
killifish Fundulus grandis embryos. Aquaculture 315, 335–339.
https://doi.org/10.1016/j.aquaculture.2011.02.041
Conover, D.O., Schultz, E.T., 1995. Phenotypic similarity and the
evolutionary significance of countergradient variation. Trends in
Ecology & Evolution 10, 248–252.
https://doi.org/10.1016/S0169-5347(00)89081-3
Deeming, D.C., Birchard, G.F., 2007. Allometry of egg and hatchling mass
in birds and reptiles: roles of developmental maturity, eggshell
structure and phylogeny. Journal of Zoology 271, 78–87.
https://doi.org/10.1111/j.1469-7998.2006.00219.x
Du, W., Warner, D.A., Langkilde, T., Robbins, T., Shine, R., 2010a. The
Physiological Basis of Geographic Variation in Rates of Embryonic
Development within a Widespread Lizard Species. The American Naturalist
176, 522–528. https://doi.org/10.1086/656270
DU, W., Ji, X., Zhang, Y., Lin, Z., Xu, X., 2010b. Geographic variation
in offspring size of a widespread lizard (Takydromus septentrionalis):
importance of maternal investment. Biological Journal of the Linnean
Society 101, 59–67. https://doi.org/10.1111/j.1095-8312.2010.01492.x
Du, W., Shine, R., 2022. The behavioural and physiological ecology of
embryos: responding to the challenges of life inside an egg. Biological
Reviews 97, 1272–1286. https://doi.org/10.1111/brv.12841
Du, W., Shine, R., 2008. The influence of hydric environments during egg
incubation on embryonic heart rates and offspring phenotypes in a
scincid lizard (Lampropholis guichenoti). Comparative Biochemistry and
Physiology Part A: Molecular & Integrative Physiology 151, 102–107.
https://doi.org/10.1016/j.cbpa.2008.06.005
Du, W., Shine, R., Ma, L., Sun, B.-J., 2019. Adaptive responses of the
embryos of birds and reptiles to spatial and temporal variations in nest
temperatures. Proceedings of the Royal Society B: Biological Sciences
286, 20192078. https://doi.org/10.1098/rspb.2019.2078
Ferguson, M. W. J., 1985. The reproductive biology and embryology of the
crocodilians. C. G ans, F. S. Billet, and P. F. A. Maderson. Biology of
Reptilia. New York, Wiley. 329–491
Flatt, T., 2001. Phenotypic variation in an oviparous montane lizard
(Bassiana duperreyi): the effects of thermal and hydric incubation
environments. Biological Journal of the Linnean Society 74, 339–350.
https://doi.org/10.1006/bijl.2001.0581
Groothuis, T.G.G., Müller, W., von Engelhardt, N., Carere, C., Eising,
C., 2005. Maternal hormones as a tool to adjust offspring phenotype in
avian species. Neuroscience & Biobehavioral Reviews 29, 329–352.
https://doi.org/10.1016/j.neubiorev.2004.12.002
Hudak, A., Dybdahl, M., 2023. Phenotypic plasticity under the effects of
multiple environmental variables. Evolution 77, 1370–1381.
https://doi.org/10.1093/evolut/qpad049
Johnson, J.M., Bock, S.L., Smaga, C.R., Lambert, M.R., Rainwater, T.R.,
Wilkinson, P.M., Parrott, B.B., 2023. Relationships between
maternally-transferred mercury and hatchling development, behavior, and
survival in the American alligator (Alligator mississippiensis). Science
of The Total Environment 870, 162010.
https://doi.org/10.1016/j.scitotenv.2023.162010
Kawecki, T.J., Ebert, D., 2004. Conceptual issues in local adaptation.
Ecology Letters 7, 1225–1241.
https://doi.org/10.1111/j.1461-0248.2004.00684.x
Kohno, S., Parrott, B.B., Yatsu, R., Miyagawa, S., Moore, B.C., Iguchi,
T., Guillette, L., 2014. Gonadal Differentiation in Reptiles Exhibiting
Environmental Sex Determination. Sex Dev 8, 208–226.
https://doi.org/10.1159/000358892
Lang, J.W., Andrews, H.V., 1994. Temperature-dependent sex determination
in crocodilians. Journal of Experimental Zoology 270, 28–44.
https://doi.org/10.1002/jez.1402700105
Larriera, A., Piña, C.I., Siroski, P., Verdade, L.M., 2004. Allometry of
Reproduction in Wild Broad-Snouted Caimans (Caiman latirostris). hpet
38, 301–304. https://doi.org/10.1670/145-03A
Lenth, R.V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M.,
Jung, M., Love, J., Miguez, F., Riebl, H., Singmann, H., 2023. Emmeans:
estimated marginal means, aka least-square means.
https://CRAN.R-project.org/package=emmeans.
Lüdecke, D., 2018. ggeffects: Tidy Data Frames of Marginal Effects from
Regression Models. Journal of Open Source Software 3(26), 772.
doi:10.21105/joss.00772.
Marshall, D.J., Pettersen, A.K., Bode, M., White, C.R., 2020.
Developmental cost theory predicts thermal environment and vulnerability
to global warming. Nat Ecol Evol 4, 406–411.
https://doi.org/10.1038/s41559-020-1114-9
McCormick, M.I., 1998. Behaviorally Induced Maternal Stress in a Fish
Influences Progeny Quality by a Hormonal Mechanism. Ecology 79,
1873–1883.
https://doi.org/10.1890/0012-9658(1998)079[1873:BIMSIA]2.0.CO;2
McCoy, J.A., Hamlin, H.J., Thayer, L., Guillette, L.J., Parrott, B.B.,
2016. The influence of thermal signals during embryonic development on
intrasexual and sexually dimorphic gene expression and circulating
steroid hormones in American alligator hatchlings ( Alligator
mississippiensis ). General and Comparative Endocrinology 238, 47–54.
https://doi.org/10.1016/j.ygcen.2016.04.011
McCoy, J.A., Parrott, B.B., Rainwater, T.R., Wilkinson, P.M., Guillette,
L.J., 2015. Incubation history prior to the canonical thermosensitive
period determines sex in the American alligator. REPRODUCTION 150,
279–287. https://doi.org/10.1530/REP-15-0155
Merilä, J., Laurila, A., Laugen, A.T., Räsänen, K., Pahkala, M., 2000.
Plasticity in age and size at metamorphosis in Rana temporaria -
comparison of high and low latitude populations. Ecography 23, 457–465.
https://doi.org/10.1111/j.1600-0587.2000.tb00302.x
Moore, M.P., Whiteman, H.H., Martin, R.A., 2019. A mother’s legacy: the
strength of maternal effects in animal populations. Ecology Letters 22,
1620–1628. https://doi.org/10.1111/ele.13351
Mousseau, T.A., Fox, C.W., 1998. The adaptive significance of maternal
effects. Trends in Ecology & Evolution 13, 403–407.
https://doi.org/10.1016/S0169-5347(98)01472-4
Mueller, C.A., Eme, J., Manzon, R.G., Somers, C.M., Boreham, D.R.,
Wilson, J.Y., 2015. Embryonic critical windows: changes in incubation
temperature alter survival, hatchling phenotype, and cost of development
in lake whitefish (Coregonus clupeaformis). J Comp Physiol B 185,
315–331. https://doi.org/10.1007/s00360-015-0886-8
Murphy, K.M., Radder, R.S., Shine, R., Warner, D.A., 2020. Lizard
Embryos Prioritize Posthatching Energy Reserves over Increased Hatchling
Body Size during Development. Physiological and Biochemical Zoology 93,
339–346. https://doi.org/10.1086/710053
Murray, C., Crother, B., Merchant, M., Cooper, Easter, M., 2013. Can
Reproductive Allometry Assess Population Marginality in Crocodilians? A
Comparative Analysis of Gulf Coast American Alligator (Alligator
mississippiensis) Populations. Copeia 2013.
https://doi.org/10.1643/CH-11-136
Orizaola, G., Laurila, A., 2016. Developmental plasticity increases at
the northern range margin in a warm-dependent amphibian. Evolutionary
Applications 9, 471–478. https://doi.org/10.1111/eva.12349
Orizaola, G., Laurila, A., 2009. Microgeographic variation in
temperature-induced plasticity in an isolated amphibian metapopulation.
Evol Ecol 23, 979–991. https://doi.org/10.1007/s10682-008-9285-x
Pettersen, A.K., 2020. Countergradient Variation in Reptiles: Thermal
Sensitivity of Developmental and Metabolic Rates Across Locally Adapted
Populations. Frontiers in Physiology 11.
Pettersen, A.K., Ruuskanen, S., Nord, A., Nilsson, J.F., Miñano, M.R.,
Fitzpatrick, L.J., While, G.M., Uller, T., 2023. Population divergence
in maternal investment and embryo energy use and allocation suggests
adaptive responses to cool climates. Journal of Animal Ecology n/a.
https://doi.org/10.1111/1365-2656.13971
Pettersen, A.K., White, C.R., Bryson-Richardson, R.J., Marshall, D.J.,
2019. Linking life-history theory and metabolic theory explains the
offspring size-temperature relationship. Ecology Letters 22, 518–526.
https://doi.org/10.1111/ele.13213
R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.”
Radder, R.S., Shanbhag, B.A., Saidapur, S.K., 2004. Yolk partitioning in
embryos of the lizard, Calotes versicolor: Maximize body size or save
energy for later use? Journal of Experimental Zoology Part A:
Comparative Experimental Biology 301A, 783–785.
https://doi.org/10.1002/jez.a.95
Radder, R.S., Warner, D.A., Cuervo, J.J., Shine, R., 2007. The
functional significance of residual yolk in hatchling lizards
Amphibolurus muricatus (Agamidae). Functional Ecology 21, 302–309.
https://doi.org/10.1111/j.1365-2435.2006.01238.x
Richter‐Boix, A., Katzenberger, M., Duarte, H., Quintela, M., Tejedo,
M., Laurila, A., 2015. Local divergence of thermal reaction norms among
amphibian populations is affected by pond temperature variation.
Evolution 69, 2210–2226. https://doi.org/10.1111/evo.12711
Ronget, V., Gaillard, J.-M., Coulson, T., Garratt, M., Gueyffier, F.,
Lega, J.-C., Lemaître, J.-F., 2018. Causes and consequences of variation
in offspring body mass: meta-analyses in birds and mammals. Biological
Reviews 93, 1–27. https://doi.org/10.1111/brv.12329
Royle, N.J., Surai, P.F., Hartley, I.R., 2003. The effect of variation
in dietary intake on maternal deposition of antioxidants in zebra finch
eggs. Functional Ecology 17, 472–481.
https://doi.org/10.1046/j.1365-2435.2003.00752.x
Saino, N., Romano, M., Ferrari, R.P., Martinelli, R., Møller, A.P.,
2005. Stressed mothers lay eggs with high corticosterone levels which
produce low-quality offspring. Journal of Experimental Zoology Part A:
Comparative Experimental Biology 303A, 998–1006.
https://doi.org/10.1002/jez.a.224
Schwanz, L.E., Cordero, G.A., Charnov, E.L., Janzen, F.J., 2016.
Sex-specific survival to maturity and the evolution of environmental sex
determination: The evolution of sex determination in reptiles. 70,
329–341. https://doi.org/10.1111/evo.12856
Seebacher, F., White, C.R., Franklin, C.E., 2015. Physiological
plasticity increases resilience of ectothermic animals to climate
change. Nature Clim Change 5, 61–66.
https://doi.org/10.1038/nclimate2457
SHINE, R., BROWN, G.P., 2002. Effects of seasonally varying hydric
conditions on hatchling phenotypes of keelback snakes (Tropidonophis
mairii, Colubridae) from the Australian wet-dry tropics. Biological
Journal of the Linnean Society 76, 339–347.
https://doi.org/10.1046/j.1095-8312.2002.00068.x
Sinervo, B., 1990. The evolution of maternal investment in lizards: an
experimental and comparative analysis of egg size and its effects on
offspring performance. Evolution 44, 279–294.
https://doi.org/10.1111/j.1558-5646.1990.tb05198.x
Stearns, S.C., 2000. Life history evolution: successes, limitations, and
prospects. Naturwissenschaften 87, 476–486.
https://doi.org/10.1007/s001140050763
Telemeco, R.S., Radder, R.S., Baird, T.A., Shine, R., 2010. Thermal
effects on reptile reproduction: adaptation and phenotypic plasticity in
a montane lizard: Thermal effects on reptile reproduction. Biological
Journal of the Linnean Society 100, 642–655.
https://doi.org/10.1111/j.1095-8312.2010.01439.x
Urvik, J., Rattiste, K., Giraudeau, M., Okuliarová, M., Hõrak, P., Sepp,
T., 2018. Age-specific patterns of maternal investment in common gull
egg yolk. Biology Letters 14, 20180346.
https://doi.org/10.1098/rsbl.2018.0346
Van Dyke, J.U., Griffith, O.W., 2018. Mechanisms of reproductive
allocation as drivers of developmental plasticity in reptiles. Journal
of Experimental Zoology Part A: Ecological and Integrative Physiology
329, 275–286. https://doi.org/10.1002/jez.2165
Warner, D.A., Lovern, M.B., 2014. The Maternal Environment Affects
Offspring Viability via an Indirect Effect of Yolk Investment on
Offspring Size. Physiological and Biochemical Zoology 87, 276–287.
https://doi.org/10.1086/674454
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. ISBN 978-3-319-24277-4,
https://ggplot2.tidyverse.org.
Zhao, B., Chen, Y., Lu, H.-L., Zeng, Z.-G., Du, W.-G., 2015. Latitudinal
differences in temperature effects on the embryonic development and
hatchling phenotypes of the Asian yellow pond turtle, Mauremys mutica.
Biological Journal of the Linnean Society 114, 35–43.
https://doi.org/10.1111/bij.12400