References

Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F., & Estonba, A. (2016). Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Marine Biology, 163(7), 1-13. Alaeddini, R., Walsh, S. J., & Abbas, A. (2010, Apr). Forensic implications of genetic analyses from degraded DNA-A review [Review]. Forensic Science International-Genetics, 4(3), 148-157.https://doi.org/10.1016/j.fsigen.2009.09.007Alexander, J. B., Bunce, M., White, N., Wilkinson, S. P., Adam, A. A., Berry, T., Stat, M., Thomas, L., Newman, S. J., & Dugal, L. (2020). Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs, 39, 159-171. Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M. (2014, Feb). Environmental Conditions Influence eDNA Persistence in Aquatic Systems [Article]. Environmental Science & Technology, 48(3), 1819-1827.https://doi.org/10.1021/es404734pBohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Douglas, W. Y., & De Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in ecology & evolution, 29(6), 358-367. Boyle, A. H. D., Olsen, V., Boyle, D., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., & Phillott, R. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of aquatic organisms, 73(3), 175-192. Brozio, S., Manson, C., Gourevitch, E., Burns, T. J., Greener, M. S., Downie, J. R., & Hoskisson, P. A. (2017). Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in bromeliad phytotelmata. Plos One, 12(2), e0170619. [Record #126 is using a reference type undefined in this output style.] Brys, R., Haegeman, A., Halfmaerten, D., Neyrinck, S., Staelens, A., Auwerx, J., & Ruttink, T. (2021). Monitoring of spatiotemporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Molecular Ecology, 30(13), 3097-3110. Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., Baillie, J. E., Bomhard, B., Brown, C., & Bruno, J. (2010). Global biodiversity: indicators of recent declines.Science, 328(5982), 1164-1168. Champlot, S., Berthelot, C., Pruvost, M., Bennett, E. A., Grange, T., & Geigl, E.-M. (2010). An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications.PLoS ONE, 5(9), e13042. Chen, X. Y., Kong, Y. Q., Zhang, S., Zhao, J. D., Li, S., & Yao, M. (2022, Aug). Comparative Evaluation of Common Materials as Passive Samplers of Environmental DNA [Article]. Environmental Science & Technology, 56(15), 10798-10807.https://doi.org/10.1021/acs.est.2c02506Corinaldesi, C., Beolchini, F., & Dell’Anno, A. (2008, Sep). Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences [Article]. Molecular Ecology, 17(17), 3939-3951.https://doi.org/10.1111/j.1365-294X.2008.03880.xCowart, D. A., Murphy, K. R., & Cheng, C. H. C. (2018, Feb). Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula [Article].Marine Genomics, 37, 148-160.https://doi.org/10.1016/j.margen.2017.11.003De Brauwer, M., Chariton, A., Clarke, L., Cooper, M., DiBattista, J., Furlan, E., Giblot-Ducray, D., Gleeson, D., Harford, A., & Herbert, S. (2022). Environmental DNA protocol development guide for biomonitoring. Deiner, K., Bik, H. M., Machler, E., Seymour, M., Lacoursiere-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017, Nov). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities [Review]. Molecular Ecology, 26(21), 5872-5895.https://doi.org/10.1111/mec.14350Deiner, K., Walser, J. C., Machler, E., & Altermatt, F. (2015, Mar). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [Article]. Biological Conservation, 183, 53-63.https://doi.org/10.1016/j.biocon.2014.11.018Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011, Aug). Persistence of Environmental DNA in Freshwater Ecosystems [Article]. PLoS ONE, 6(8), 4, Article e23398.https://doi.org/10.1371/journal.pone.0023398Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C. (2012, Aug). Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus [Article]. Journal of Applied Ecology, 49(4), 953-959.https://doi.org/10.1111/j.1365-2664.2012.02171.xDiffey, B. L. (2002, Sep). Sources and measurement of ultraviolet radiation [Article]. Methods, 28(1), 4-13, Article Pii s1046-2023(02)00204-9.https://doi.org/10.1016/s1046-2023(02)00204-9Doi, H., Minamoto, T., Takahara, T., Tsuji, S., Uchii, K., Yamamoto, S., Katano, I., & Yamanaka, H. (2021). Compilation of real‐time PCR conditions toward the standardization of environmental DNA methods.Ecological Research, 36(3), 379-388. Ehrenfeld, J. G. (2010). Ecosystem Consequences of Biological Invasions. In D. J. Futuyma, H. B. Shafer, & D. Simberloff (Eds.), Annual Review of Ecology, Evolution, and Systematics, Vol 41 (Vol. 41, pp. 59-80). Annual Reviews.https://doi.org/10.1146/annurev-ecolsys-102209-144650Everts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H., & Brys, R. (2021, May). Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus) using ddPCR eDNA assays [Article]. Scientific Reports, 11(1), 13, Article 11282.https://doi.org/10.1038/s41598-021-90771-wEverts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H., & Brys, R. (2021). Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus) using ddPCR eDNA assays. Scientific reports, 11(1), 1-13. Ficetola, G. F., Coissac, E., Zundel, S., Riaz, T., Shehzad, W., Bessiere, J., Taberlet, P., & Pompanon, F. (2010, Jul). An In silico approach for the evaluation of DNA barcodes [Article]. Bmc Genomics, 11, 10, Article 434.https://doi.org/10.1186/1471-2164-11-434Ficetola, G. F., Manenti, R., & Taberlet, P. (2019). Environmental DNA and metabarcoding for the study of amphibians and reptiles: species distribution, the microbiome, and much more [Review].Amphibia-Reptilia, 40(2), 129-148.https://doi.org/10.1163/15685381-20191194Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples.Biology letters, 4(4), 423-425. Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet‐Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., & Pompanon, F. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources, 15(3), 543-556. Ficetola, G. F., Thuiller, W., & Miaud, C. (2007, Jul). Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog [Article]. Diversity and Distributions, 13(4), 476-485.https://doi.org/10.1111/j.1472-4642.2007.00377.xFu, X. H., Wang, L., Le, Y. Q., & Hu, J. J. (2012). Persistence and renaturation efficiency of thermally treated waste recombinant DNA in defined aquatic microcosms [Article]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 47(13), 1975-1983.https://doi.org/10.1080/10934529.2012.695260Gao, Z., Qian, T., Jiang, J., Hou, D., Deng, X., & Yang, D. (2022, Feb). Species diversity and distribution of amphibians and reptiles in Hunan Province, China [Article]. Biodiversity Science, 30(2), 21290.https://doi.org/10.17520/biods.2021290Giguet-Covex, C., Ficetola, G. F., Walsh, K., Poulenard, J., Bajard, M., Fouinat, L., Sabatier, P., Gielly, L., Messager, E., Develle, A. L., David, F., Taberlet, P., Brisset, E., Guiter, F., Sinet, R., & Arnaud, F. (2019, Oct). New insights on lake sediment DNA from the catchment: importance of taphonomic and analytical issues on the record quality [Article]. Scientific Reports, 9, 21, Article 14676.https://doi.org/10.1038/s41598-019-50339-1Godar, D. E. (2005, Jul-Aug). UV doses worldwide [Review].Photochemistry and Photobiology, 81(4), 736-749.https://doi.org/10.1562/2004-09-07-ir-308r.1Goldberg, C. S., Pilliod, D. S., Arkle, R. S., & Waits, L. P. (2011). Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.Plos One, 6(7), e22746. Goldberg, C. S., Pilliod, D. S., Arkle, R. S., & Waits, L. P. (2011, Jul). Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders [Article]. Plos One, 6(7), 5, Article e22746.https://doi.org/10.1371/journal.pone.0022746Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science, 32(3), 792-800. Goldberg, C. S., Strickler, K. M., & Fremier, A. K. (2018, Aug). Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs [Article]. Science of the Total Environment, 633, 695-703.https://doi.org/10.1016/j.scitotenv.2018.02.295Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., Spear, S. F., McKee, A., Oyler‐McCance, S. J., & Cornman, R. S. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in ecology and evolution, 7(11), 1299-1307. Hader, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2003, Jan). Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors [Review].Photochemical & Photobiological Sciences, 2(1), 39-50.https://doi.org/10.1039/b211160hHandelsman, J. (2004, Dec). Metagenomics: Application of genomics to uncultured microorganisms [Review]. Microbiology and Molecular Biology Reviews, 68(4), 669-+.https://doi.org/10.1128/mmbr.68.4.669-685.2004Hartman, L. J., Coyne, S. R., & Norwood, D. A. (2005). Development of a novel internal positive control for Taqman® based assays.Molecular and cellular probes, 19(1), 51-59. Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M., & Pääbo, S. (2001). ancient DNA. Nature Reviews Genetics, 2(5), 353-359. Hopkins, G. W., & Freckleton, R. P. (2002, Aug). Declines in the numbers of amateur and professional taxonomists: implications for conservation [Article]. Animal Conservation, 5, 245-249.https://doi.org/10.1017/s1367943002002299Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011, Apr). ”Sight-unseen” detection of rare aquatic species using environmental DNA [Article]. Conservation Letters, 4(2), 150-157.https://doi.org/10.1111/j.1755-263X.2010.00158.xJo, T., Tomita, S., Kohmatsu, Y., Osathanunkul, M., Ushimaru, A., & Minamoto, T. (2020). Seasonal monitoring of Hida salamander Hynobius kimurae using environmental DNA with a genus-specific primer set [Article]. Endangered Species Research, 43, 341-352.https://doi.org/10.3354/esr01073Johnson, M. D., Cox, R. D., & Barnes, M. A. (2019, Nov). The detection of a non-anemophilous plant species using airborne eDNA [Article].Plos One, 14(11), 13, Article e0225262.https://doi.org/10.1371/journal.pone.0225262Johnson, M. D., Fokar, M., Cox, R. D., & Barnes, M. A. (2021, Dec). Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey [Article]. Bmc Ecology and Evolution, 21(1), 15, Article 218.https://doi.org/10.1186/s12862-021-01947-xKamoroff, C., & Goldberg, C. S. (2017). Using environmental DNA for early detection of amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Diseases of aquatic organisms, 127(1), 75-79. Kelly, R. P., Port, J. A., Yamahara, K. M., Martone, R. G., Lowell, N., Thomsen, P. F., Mach, M. E., Bennett, M., Prahler, E., & Caldwell, M. R. (2014). Harnessing DNA to improve environmental management.Science, 344(6191), 1455-1456. Kelly, R. P., Shelton, A. O., & Gallego, R. (2019). Understanding PCR processes to draw meaningful conclusions from environmental DNA studies.Scientific reports, 9(1), 1-14. Kirshtein, J. D., Anderson, C. W., Wood, J. S., Longcore, J. E., & Voytek, M. A. (2007). Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Diseases of aquatic organisms, 77(1), 11-15. Kodama, T., Miyazono, S., Akamatsu, Y., Tsuji, S., & Nakao, R. (2022, Apr). Abundance estimation of riverine macrophyte Egeria densa using environmental DNA: effects of sampling season and location [Article]. Limnology, 23(2), 299-308.https://doi.org/10.1007/s10201-021-00689-5Laroche, O., Wood, S. A., Tremblay, L. A., Ellis, J. I., Lear, G., & Pochon, X. (2018, Feb). A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations [Article]. Marine Pollution Bulletin, 127, 97-107.https://doi.org/10.1016/j.marpolbul.2017.11.042Li, C., Xie, F., Che, J., & Jiang, J. (2017, Mar). Monitoring and research of amphibians and reptiles diversity in key areas of China [Article]. Biodiversity Science, 25(3), 246-254.https://doi.org/10.17520/biods.2016137Li, W. H., Song, T. J., Hou, X. L., Qin, M. S., Xu, C. X., & Li, Y. M. (2021, Sep). Application of eDNA Metabarcoding for Detecting Anura on a Tropical Island [Article]. Diversity-Basel, 13(9), 12, Article 440.https://doi.org/10.3390/d13090440Lin, M. X., Zhang, S., & Yao, M. (2019, Jul). Effective detection of environmental DNA from the invasive American bullfrog [Article].Biological Invasions, 21(7), 2255-2268.https://doi.org/10.1007/s10530-019-01974-2Lindahl, T. (1993). Instability and decay of the primary structure of DNA. nature, 362(6422), 709-715. Lodge, D. M., Turner, C. R., Jerde, C. L., Barnes, M. A., Chadderton, L., Egan, S. P., Feder, J. L., Mahon, A. R., & Pfrender, M. E. (2012, Jun). Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA [Editorial Material].Molecular Ecology, 21(11), 2555-2558.https://doi.org/10.1111/j.1365-294X.2012.05600.xLopes, C. M., Baêta, D., Valentini, A., Lyra, M. L., Sabbag, A. F., Gasparini, J. L., Dejean, T., Haddad, C. F. B., & Zamudio, K. R. (2021). Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA. Molecular Ecology, 30(13), 3289-3298. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & Langtimm, C. A. (2002, Aug). Estimating site occupancy rates when detection probabilities are less than one [Article]. Ecology, 83(8), 2248-2255.https://doi.org/10.1890/0012-9658(2002)083[2248:Esorwd]2.0.Co;2McKee, A. M., Calhoun, D. L., Barichivich, W. J., Spear, S. F., Goldberg, C. S., & Glenn, T. C. (2015, Dec). Assessment of Environmental DNA for Detecting Presence of Imperiled Aquatic Amphibian Species in Isolated Wetlands [Article]. Journal of Fish and Wildlife Management, 6(2), 498-510.https://doi.org/10.3996/042014-jfwm-034McKee, A. M., Spear, S. F., & Pierson, T. W. (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation, 183, 70-76. Minamoto, T., Miya, M., Sado, T., Seino, S., Doi, H., Kondoh, M., Nakamura, K., Takahara, T., Yamamoto, S., & Yamanaka, H. (2021). An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environmental DNA, 3(1), 8-13. Moss, W. E., Harper, L. R., Davis, M. A., Goldberg, C. S., Smith, M. M., & Johnson, P. T. (2022). Navigating the trade‐offs between environmental DNA and conventional field surveys for improved amphibian monitoring. Ecosphere, 13(2), e3941. Moss, W. E., Harper, L. R., Davis, M. A., Goldberg, C. S., Smith, M. M., & Johnson, P. T. J. (2022, Feb). Navigating the trade-offs between environmental DNA and conventional field surveys for improved amphibian monitoring [Article]. Ecosphere, 13(2), 17, Article e3941.https://doi.org/10.1002/ecs2.3941Okabe, S., & Shimazu, Y. (2007, Sep). Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity [Article]. Applied Microbiology and Biotechnology, 76(4), 935-944.https://doi.org/10.1007/s00253-007-1048-zPawlowski, J., Apothéloz-Perret-Gentil, L., Mächler, E., & Altermatt, F. (2020). Environmental DNA applications for biomonitoring and bioassessment in aquatic ecosystems. Environmental Studies. Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258-4264. Pierson, T. W., McKee, A. M., Spear, S. F., Maerz, J. C., Camp, C. D., & Glenn, T. C. (2016). Detection of an enigmatic plethodontid salamander using environmental DNA. Copeia, 104(1), 78-82. Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 70(8), 1123-1130. Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing detection of eDNA from a stream‐dwelling amphibian.Molecular Ecology Resources, 14(1), 109-116. Pote, J., Ackermann, R., & Wildi, W. (2009, Jul). Plant leaf mass loss and DNA release in freshwater sediments [Article].Ecotoxicology and Environmental Safety, 72(5), 1378-1383.https://doi.org/10.1016/j.ecoenv.2009.04.010Prince, A. M., & Andrus, L. (1992). PCR: how to kill unwanted DNA.BioTechniques, 12(3), 358-360. Pysek, P., & Richardson, D. M. (2010). Invasive Species, Environmental Change and Management, and Health. In A. Gadgil & D. M. Liverman (Eds.), Annual Review of Environment and Resources, Vol 35 (Vol. 35, pp. 25-55). Annual Reviews.https://doi.org/10.1146/annurev-environ-033009-095548Rachowicz, L. J., Knapp, R. A., Morgan, J. A., Stice, M. J., Vredenburg, V. T., Parker, J. M., & Briggs, C. J. (2006). Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology, 87(7), 1671-1683. Ravanat, J. L., Douki, T., & Cadet, J. (2001, Oct). Direct and indirect effects of UV radiation on DNA and its components [Review].Journal of Photochemistry and Photobiology B-Biology, 63(1-3), 88-102.https://doi.org/10.1016/s1011-1344(01)00206-8Renan, S., Gafny, S., Perl, R. B., Roll, U., Malka, Y., Vences, M., & Geffen, E. (2017). Living quarters of a living fossil—Uncovering the current distribution pattern of the rediscovered Hula painted frog (Latonia nigriventer) using environmental DNA. Molecular Ecology, 26(24), 6801-6812. Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., & Lodge, D. M. (2015). The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction. Molecular Ecology Resources, 15(1), 168-176. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J., & Goodman, R. M. (2000, Jun). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms [Article]. Applied and Environmental Microbiology, 66(6), 2541-2547.https://doi.org/10.1128/aem.66.6.2541-2547.2000Ruppert, K. M., Davis, D. R., Rahman, M. S., & Kline, R. J. (2022). Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae). Environmental Advances, 7, 100163. Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. Sasso, T., Lopes, C. M., Valentini, A., Dejean, T., Zarnudio, K. R., Haddad, C. F. B., & Martins, M. (2017, Nov). Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: Potential application for conservation of a rich and threatened fauna [Article]. Biological Conservation, 215, 225-232.https://doi.org/10.1016/j.biocon.2017.09.015Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., & Catenazzi, A. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363(6434), 1459-1463. Schultz, M. T., & Lance, R. F. (2015). Modeling the sensitivity of field surveys for detection of environmental DNA (eDNA). Plos One, 10(10), e0141503. Šigut, M., Kostovčík, M., Šigutová, H., Hulcr, J., Drozd, P., & Hrček, J. (2017). Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host–parasitoid interactions. PLoS ONE, 12(12), e0187803. Stoeck, T., Fruhe, L., Forster, D., Cordier, T., Martins, C. I. M., & Pawlowski, J. (2018, Feb). Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture [Article]. Marine Pollution Bulletin, 127, 139-149.https://doi.org/10.1016/j.marpolbul.2017.11.065Strand, D. A., Holst-Jensen, A., Viljugrein, H., Edvardsen, B., Klaveness, D., Jussila, J., & Vrålstad, T. (2011). Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments. Diseases of aquatic organisms, 95(1), 9-17. Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015, Mar). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms [Article]. Biological Conservation, 183, 85-92.https://doi.org/10.1016/j.biocon.2014.11.038Svenningsen, A. K. N., Pertoldi, C., & Bruhn, D. (2022, Mar). eDNA Metabarcoding Benchmarked towards Conventional Survey Methods in Amphibian Monitoring [Article]. Animals, 12(6), 15, Article 763.https://doi.org/10.3390/ani12060763Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018).Environmental DNA: For biodiversity research and monitoring. Oxford University Press. Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012, Apr). Environmental DNA [Editorial Material]. Molecular Ecology, 21(8), 1789-1793.https://doi.org/10.1111/j.1365-294X.2012.05542.xTakahara, T., Iwai, N., Yasumiba, K., & Igawa, T. (2020, Mar). Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons [Article]. Freshwater Science, 39(1), 18-27.https://doi.org/10.1086/707365Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. i. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868. Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Campbell, M. A., Van Der Heyde, M., Heydenrych, M. J., Juszkiewicz, D. J., Nevill, P., & Dawkins, K. L. (2023). Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Science of the Total Environment, 873, 162322. Thomsen, P. F., Kielgast, J., Iversen, L. L., Moller, P. R., Rasmussen, M., & Willerslev, E. (2012, Aug). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples [Article].Plos One, 7(8), 9, Article e41732.https://doi.org/10.1371/journal.pone.0041732Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., & Willerslev, E. (2012, Jun). Monitoring endangered freshwater biodiversity using environmental DNA [Article]. Molecular Ecology, 21(11), 2565-2573.https://doi.org/10.1111/j.1365-294X.2011.05418.xThomsen, P. F., & Willerslev, E. (2015, Mar). Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity [Article]. Biological Conservation, 183, 4-18.https://doi.org/10.1016/j.biocon.2014.11.019Torresdal, J. D., Farrell, A. D., & Goldberg, C. S. (2017). Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. Plos One, 12(1), e0168787. Tsai, Y.-L., & Olson, B. H. (1992). Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction.Applied and environmental microbiology, 58(2), 754-757. Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environmental DNA, 1(2), 99-108. Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014, Jul). Particle size distribution and optimal capture of aqueous macrobial eDNA [Article]. Methods in ecology and evolution, 5(7), 676-684.https://doi.org/10.1111/2041-210x.12206Unnithan, V. V., Unc, A., Joe, V., & Smith, G. B. (2014). Short RNA indicator sequences are not completely degraded by autoclaving.Scientific reports, 4(1), 1-5. Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J. M., Peroux, T., Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Moller, P. R., Willerslev, E., & Dejean, T. (2016, Feb). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [Article]. Molecular Ecology, 25(4), 929-942.https://doi.org/10.1111/mec.13428Venkatesan, B. M., & Bashir, R. (2011, Oct). Nanopore sensors for nucleic acid analysis [Review]. Nature Nanotechnology, 6(10), 615-624.https://doi.org/10.1038/nnano.2011.129Vitousek, P. M., Dantonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: A significant component of human-caused global change [Review]. New Zealand Journal of Ecology, 21(1), 1-16. <Go to ISI>://WOS:A1997XP01200001 Voros, J., Marton, O., Schmidt, B. R., Gal, J. T., & Jelic, D. (2017, Jan). Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA [Article]. Plos One, 12(1), 14, Article e0170945.https://doi.org/10.1371/journal.pone.0170945Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T., & Jelić, D. (2017). Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. Plos One, 12(1), e0170945. Walker, D. M., Leys, J. E., Dunham, K. E., Oliver, J. C., Schiller, E. E., Stephenson, K. S., Kimrey, J. T., Wooten, J., & Rogers, M. W. (2017, Nov). Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation [Article]. Molecular Ecology Resources, 17(6), 1223-1230.https://doi.org/10.1111/1755-0998.12667Walker, S. F., Salas, M. B., Jenkins, D., Garner, T. W., Cunningham, A. A., Hyatt, A. D., Bosch, J., & Fisher, M. C. (2007). Environmental detection of Batrachochytrium dendrobatidis in a temperate climate.Diseases of aquatic organisms, 77(2), 105-112. Wei, N., Nakajima, F., & Tobino, T. (2019). Variation of environmental DNA in sediment at different temporal scales in nearshore area of Tokyo Bay. Journal of Water and Environment Technology, 17(3), 153-162. West, K. M., Adam, A. A., White, N., Robbins, W. D., Barrow, D., Lane, A., & T Richards, Z. (2022). The applicability of eDNA metabarcoding approaches for sessile benthic surveying in the Kimberley region, north‐western Australia. Environmental DNA, 4(1), 34-49. Wilcox, T. M., McKelvey, K. S., Young, M. K., Jane, S. F., Lowe, W. H., Whiteley, A. R., & Schwartz, M. K. (2013). Robust detection of rare species using environmental DNA: the importance of primer specificity.PLoS ONE, 8(3), e59520. Xu, H.; Wu, J.; Wu, Y.; Guo, W.; He, Y.; Li, J.; Li, J.; Chen, M.; Cai, L. (2018).Progress in Construction of China Amphibian Diversity Observation Network ( China BON-Amphibians) . Journal of Ecology and Rural Environment, 34:20–26. Yang, J., Zhang, X., Xie, Y., Song, C., Zhang, Y., Yu, H., & Burton, G. A. (2017). Zooplankton community profiling in a eutrophic freshwater ecosystem-lake tai basin by DNA metabarcoding. Scientific reports, 7(1), 1-11. Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature. Environmental DNA, 1(1), 5-13. Zhang, S., Lu, Q., Wang, Y., Wang, X., Zhao, J., & Yao, M. (2020). Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes.Molecular Ecology Resources, 20(1), 242-255. Zhang, Y., Pavlovska, M., Stoica, E., Prekrasna, I., Yang, J. H., Slobodnik, J., Zhang, X. W., & Dykyi, E. (2020, Feb). Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals [Article].Environment International, 135, 13, Article 105307.https://doi.org/10.1016/j.envint.2019.105307Zhu, B. (2006). Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water research, 40(17), 3231-3238.