Figure 5. Proportion of GLMs selecting covariates within edaphic,
climatic, land cover, remote-sensing and topographic groups of
covariates for Bacteria, Archaea, Fungi, and Protist. Corresponding
figures for other modelling algorithms are available in Supporting
Information.
Data availability
statement
The raw sequence data is available on NCBI bioproject number PRJNA810480
and PRJEB30010. All codes are available on github (to respect double
blind reviewing, link will only be given upon acceptance). Modelling
results for each individual OTU are available on Figshare:https://figshare.com/s/825799db5d4fdc9a2f87(private link, which will be published upon acceptance).
References
Abarenkov, K., Zirk,
A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg,
U. (2022). Full UNITE+INSD dataset for Fungi[Application/gzip]. UNITE Community.
https://doi.org/10.15156/BIO/2483925
Adde, A., Rey, P.-L.,
Fopp, F., Petitpierre, B., Schweiger, A. K., Broennimann, O., Lehmann,
A., Zimmermann, N. E., Altermatt, F., Pellissier, L., & Guisan, A.
(2023). Too many candidates: Embedded covariate selection procedure for
species distribution modelling with the covsel R package.Ecological Informatics, 75, 102080.
https://doi.org/10.1016/j.ecoinf.2023.102080
Allouche, O., Tsoar,
A., & Kadmon, R. (2006). Assessing the accuracy of species distribution
models: Prevalence, kappa and the true skill statistic (TSS).Journal of Applied Ecology, 43(6), 1223–1232.
https://doi.org/10.1111/j.1365-2664.2006.01214.x
Araújo, M. B.,
Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early,
R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B.,
Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution
models in biodiversity assessments. Science Advances,5(1), 1–12. https://doi.org/10.1126/sciadv.aat4858
Bahram, M.,
Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A.,
Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend,
H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson,
P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., … Bork, P.
(2018). Structure and function of the global topsoil microbiome.Nature, 560(7717), 233–237.
https://doi.org/10.1038/s41586-018-0386-6
Ballantyne, A., Smith,
W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., Shevliakova, E.,
Pan, Y., Poulter, B., Anav, A., Friedlingstein, P., Houghton, R., &
Running, S. (2017). Accelerating net terrestrial carbon uptake during
the warming hiatus due to reduced respiration. Nature Climate
Change, 7(2), 148–152. https://doi.org/10.1038/nclimate3204
Baquero, F., Coque, T.
M., Galán, J. C., & Martinez, J. L. (2021). The Origin of Niches and
Species in the Bacterial World. Frontiers in Microbiology,12, 657986. https://doi.org/10.3389/fmicb.2021.657986
Bardgett, R. D., &
Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem
functioning. Nature, 515(7528), 505–511.
https://doi.org/10.1038/nature13855
Birkhofer, K.,
Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S.,
Oelmann, Y., Wubet, T., Yurkov, A., Begerow, D., Berner, D., Buscot, F.,
Daniel, R., Diekötter, T., Ehnes, R. B., Erdmann, G., Fischer, C.,
Foesel, B., … Schrumpf, M. (2012). General relationships between
abiotic soil properties and soil biota across spatial scales and
different land-use types. PLoS ONE, 7(8).
https://doi.org/10.1371/journal.pone.0043292
Breiner, F. T.,
Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming
limitations of modelling rare species by using ensembles of small
models. Methods in Ecology and Evolution, 6(10),
1210–1218. https://doi.org/10.1111/2041-210X.12403
Breiner, F. T., Nobis,
M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of
small models for predicting the distribution of species with few
occurrences. Methods in Ecology and Evolution, 9(4),
802–808. https://doi.org/10.1111/2041-210X.12957
Broennimann, O., &
Guisan, A. (In review). CHclim25—A spatially and temporally very high
resolution climatic dataset for Switzerland. 2023. Under Review in
Scientific Data.
Bryant, D. A. (2019).
Phototrophy and Phototrophs. In Reference Module in Life Sciences(p. B9780128096338207000). Elsevier.
https://doi.org/10.1016/B978-0-12-809633-8.20672-9
Buri, A., Grand, S.,
Yashiro, E., Adatte, T., Spangenberg, J. E., Pinto-Figueroa, E.,
Verrecchia, E., & Guisan, A. (2020). What are the most crucial soil
variables for predicting the distribution of mountain plant species? A
comprehensive study in the Swiss Alps. Journal of Biogeography,47(5), 1143–1153. https://doi.org/10.1111/jbi.13803
Carter, A., Kearney,
M., Mitchell, N., Hartley, S., Porter, W., & Nelson, N. (2016).
Modelling the soil microclimate: Does the spatial or temporal resolution
of input parameters matter? Frontiers of Biogeography,7(4). https://doi.org/10.21425/F5FBG27849
Cavicchioli, R.,
Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M.,
Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther,
T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A.,
Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., …
Webster, N. S. (2019). Scientists’ warning to humanity: Microorganisms
and climate change. Nature Reviews Microbiology, 17(9),
569–586. https://doi.org/10.1038/s41579-019-0222-5
Chevalier, M.,
Zarzo-Arias, A., Guélat, J., Mateo, R. G., & Guisan, A. (2022).
Accounting for niche truncation to improve spatial and temporal
predictions of species distributions. Frontiers in Ecology and
Evolution, 10, 944116. https://doi.org/10.3389/fevo.2022.944116
Cianfrani, C., Buri,
A., Verrecchia, E., & Guisan, A. (2018). Generalizing soil properties
in geographic space: Approaches used and ways forward. PLoS ONE,13(12), 1–17. https://doi.org/10.1371/journal.pone.0208823
Collart, F.,
Broennimann, O., Guisan, A., & Vanderpoorten, A. (2023). Ecological and
biological indicators of the accuracy of species distribution models:
Lessons from European bryophytes. Ecography, e06721.
https://doi.org/10.1111/ecog.06721
Collart, F., &
Guisan, A. (2023). Small to train, small to test: Dealing with low
sample size in model evaluation. Ecological Informatics,75, 102106. https://doi.org/10.1016/j.ecoinf.2023.102106
Crowther, T. W.,
Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C.,
Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D.,
Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P.
B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B.,
… Bradford, M. A. (2016). Quantifying global soil carbon losses
in response to warming. Nature, 540(7631), 104–108.
https://doi.org/10.1038/nature20150
Cutler, D. R.,
Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., &
Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY.Ecology, 88(11), 2783–2792.
https://doi.org/10.1890/07-0539.1
Davidson, E. A., &
Janssens, I. A. (2006). Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change. Nature,440(7081), 165–173. https://doi.org/10.1038/nature04514
de Vries, F. T.,
Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S.,
Harrison, K. A., Hobbs, P. J., Quirk, H., Shipley, B., Cornelissen, J.
H. C., Kattge, J., & Bardgett, R. D. (2012). Abiotic drivers and plant
traits explain landscape-scale patterns in soil microbial communities.Ecology Letters, 15(11), 1230–1239.
https://doi.org/10.1111/j.1461-0248.2012.01844.x
Deiner, K., Walser,
J.-C., Mächler, E., & Altermatt, F. (2015). Choice of capture and
extraction methods affect detection of freshwater biodiversity from
environmental DNA. Biological Conservation, 183, 53–63.
https://doi.org/10.1016/j.biocon.2014.11.018
Deng, H. (2013).Guided Random Forest in the RRF Package.
https://doi.org/10.48550/ARXIV.1306.0237
Deng, H., & Runger,
G. (2013). Gene selection with guided regularized random forest.Pattern Recognition, 46(12), 3483–3489.
https://doi.org/10.1016/j.patcog.2013.05.018
Descombes, P.,
Walthert, L., Baltensweiler, A., Meuli, R. G., Karger, D. N., Ginzler,
C., Zurell, D., & Zimmermann, N. E. (2020). Spatial modelling of
ecological indicator values improves predictions of plant distributions
in complex landscapes. Ecography, 43(10), 1448–1463.
https://doi.org/10.1111/ecog.05117
Dormann, C. F., Elith,
J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G.,
Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C.,
Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell,
D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal
with it and a simulation study evaluating their performance.Ecography, 36(1), 27–46.
https://doi.org/10.1111/j.1600-0587.2012.07348.x
Dubuis, A.,
Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P., & Guisan, A.
(2013). Improving the prediction of plant species distribution and
community composition by adding edaphic to topo-climatic variables.Journal of Vegetation Science, 24(4), 593–606.
https://doi.org/10.1111/jvs.12002
Dubuis, A., Pottier,
J., Rion, V., Pellissier, L., Theurillat, J.-P., & Guisan, A. (2011).
Predicting spatial patterns of plant species richness: A comparison of
direct macroecological and species stacking modelling approaches:
Predicting plant species richness. Diversity and Distributions,17(6), 1122–1131.
https://doi.org/10.1111/j.1472-4642.2011.00792.x
Efron, B. (1983).
Estimating the Error Rate of a Prediction Rule: Improvement on
Cross-Validation. Journal of the American Statistical
Association, 78(382), 316–331.
https://doi.org/10.1080/01621459.1983.10477973
Efron, B., &
Tibshirani, R. (1997). Improvements on cross-validation: The .632+
bootstrap method. Journal of the American Statistical
Association, 92(438), 548–560.
https://doi.org/10.1080/01621459.1997.10474007
Elith, J., Leathwick,
J. R., & Hastie, T. (2008). A working guide to boosted regression
trees. Journal of Animal Ecology, 77(4), 802–813.
https://doi.org/10.1111/j.1365-2656.2008.01390.x
Fierer, N., &
Jackson, R. B. (2006). The diversity and biogeography of soil bacterial
communities. Proceedings of the National Academy of Sciences of
the United States of America, 103(3), 626–631.
https://doi.org/10.1073/pnas.0507535103
Franklin, J. (2010).Mapping Species Distributions: Spatial Inference and Prediction(1st ed.). Cambridge University Press.
https://doi.org/10.1017/CBO9780511810602
Galazzo, G., Van Best,
N., Benedikter, B. J., Janssen, K., Bervoets, L., Driessen, C., Oomen,
M., Lucchesi, M., Van Eijck, P. H., Becker, H. E. F., Hornef, M. W.,
Savelkoul, P. H., Stassen, F. R. M., Wolffs, P. F., & Penders, J.
(2020). How to Count Our Microbes? The Effect of Different Quantitative
Microbiome Profiling Approaches. Frontiers in Cellular and
Infection Microbiology, 10, 403.
https://doi.org/10.3389/fcimb.2020.00403
Giner, C. R., Forn,
I., Romac, S., Logares, R., De Vargas, C., & Massana, R. (2016).
Environmental Sequencing Provides Reasonable Estimates of the Relative
Abundance of Specific Picoeukaryotes. Applied and Environmental
Microbiology, 82(15), 4757–4766.
https://doi.org/10.1128/AEM.00560-16
Gloor, G. B.,
Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017).
Microbiome datasets are compositional: And this is not optional.Frontiers in Microbiology, 8(NOV), 1–6.
https://doi.org/10.3389/fmicb.2017.02224
Greenwell, B.,
Boehmke, B., Cunningham, J., & GBM Developers. (2022). gbm:
Generalized Boosted Regression Models (2.1.8.1) [Computer
software].
Griffiths, R. I.,
Thomson, B. C., Plassart, P., Gweon, H. S., Stone, D., Creamer, R. E.,
Lemanceau, P., & Bailey, M. J. (2016). Mapping and validating
predictions of soil bacterial biodiversity using European and national
scale datasets. Applied Soil Ecology, 97, 61–68.
https://doi.org/10.1016/j.apsoil.2015.06.018
Guillou, L., Bachar,
D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud,
G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J. R., Dunthorn,
M., Edvardsen, B., Holzmann, M., Kooistra, W. H. C. F., Lara, E., Le
Bescot, N., Logares, R., … Christen, R. (2012). The Protist
Ribosomal Reference database (PR2): A catalog of unicellular eukaryote
Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids
Research, 41(D1), D597–D604.
https://doi.org/10.1093/nar/gks1160
Guisan, A., Edwards,
T. C., & Hastie, T. (2002). Generalized linear and generalized additive
models in studies of species distributions: Setting the scene.Ecological Modelling, 157(2–3), 89–100.
https://doi.org/10.1016/S0304-3800(02)00204-1
Guisan, A., Graham, C.
H., Elith, J., Huettmann, F., & the NCEAS Species Distribution
Modelling Group. (2007). Sensitivity of predictive species distribution
models to change in grain size. Diversity and Distributions,13(3), 332–340.
https://doi.org/10.1111/j.1472-4642.2007.00342.x
Guisan, A., & Hofer,
U. (2003). Predicting reptile distributions at the mesoscale: Relation
to climate and topography: Predicting reptile distributions at the
mesoscale. Journal of Biogeography, 30(8), 1233–1243.
https://doi.org/10.1046/j.1365-2699.2003.00914.x
Guisan, A., & Rahbek,
C. (2011). SESAM - a new framework integrating macroecological and
species distribution models for predicting spatio-temporal patterns of
species assemblages. Journal of Biogeography, 38(8),
1433–1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x
Guisan, A.,
Theurillat, J.-P., & Kienast, F. (1998). Predicting the potential
distribution of plant species in an alpine environment. Journal of
Vegetation Science, 9(1), 65–74.
https://doi.org/10.2307/3237224
Guisan, A., &
Thuiller, W. (2005). Predicting species distribution: Offering more than
simple habitat models. Ecology Letters, 8(9), 993–1009.
https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller,
W., & Zimmermann, N. E. (2017). Habitat Suitability and
Distribution Models: With Applications in R. Cambridge University
Press. https://doi.org/10.1017/9781139028271
Guisan, A.,
Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson,
A. T. (2007). WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES:
TECHNIQUES, DATA, OR SPECIES’ CHARACTERISTICS? Ecological
Monographs, 77(4), 615–630. https://doi.org/10.1890/06-1060.1
Guo, F., Lenoir, J.,
& Bonebrake, T. C. (2018). Land-use change interacts with climate to
determine elevational species redistribution. Nature
Communications, 9(1), 1–7.
https://doi.org/10.1038/s41467-018-03786-9
Hadly, E. A., Spaeth,
P. A., & Li, C. (2009). Niche conservatism above the species level.Proceedings of the National Academy of Sciences of the United
States of America, 106(SUPPL. 2), 19707–19714.
https://doi.org/10.1073/pnas.0901648106
Hallman, T. A., &
Robinson, W. D. (2020). Deciphering ecology from statistical artefacts:
Competing influence of sample size, prevalence and habitat
specialization on species distribution models and how small evaluation
datasets can inflate metrics of performance. Diversity and
Distributions, 26(3), 315–328.
https://doi.org/10.1111/ddi.13030
Hastie, T.,
Tibshirani, R., & Friedman, J. (2009). The Elements of
Statistical Learning. Springer New York.
https://doi.org/10.1007/978-0-387-84858-7
Hédl, R., Petřík, P.,
& Boublík, K. (2011). Long-term patterns in soil acidification due to
pollution in forests of the Eastern Sudetes Mountains.Environmental Pollution, 159(10), 2586–2593.
https://doi.org/10.1016/j.envpol.2011.06.014
Hengl, T., Mendes De
Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M.,
Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S.,
& Kempen, B. (2017). SoilGrids250m: Global gridded soil information
based on machine learning. PLOS ONE, 12(2), e0169748.
https://doi.org/10.1371/journal.pone.0169748
Hernandez, P. A.,
Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of
sample size and species characteristics on performance of different
species distribution modeling methods. Ecography, 29(5),
773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Herrmann, M., Wegner,
C.-E., Taubert, M., Geesink, P., Lehmann, K., Yan, L., Lehmann, R.,
Totsche, K. U., & Küsel, K. (2019). Predominance of Cand.
Patescibacteria in Groundwater Is Caused by Their Preferential
Mobilization From Soils and Flourishing Under Oligotrophic Conditions.Frontiers in Microbiology, 10, 1407.
https://doi.org/10.3389/fmicb.2019.01407
Horrigue, W.,
Dequiedt, S., Prévost-bouré, N. C., Jolivet, C., Saby, N. P. A.,
Arrouays, D., Bispo, A., Maron, P., & Ranjard, L. (2016). Predictive
model of soil molecular microbial biomass. Ecological Indicators,64, 203–211. https://doi.org/10.1016/j.ecolind.2015.12.004
Hutchinson, G. E.
(1957). Concluding Remarks. Cold Spring Harbor Symposia on
Quantitative Biology, 22(0), 415–427.
https://doi.org/10.1101/SQB.1957.022.01.039
Irvine, K. M.,
Rodhouse, T. J., & Keren, I. N. (2016). Extending Ordinal Regression
with a Latent Zero-Augmented Beta Distribution. Journal of
Agricultural, Biological and Environmental Statistics, 21(4),
619–640. https://doi.org/10.1007/s13253-016-0265-2
Jiao, S., Peng, Z.,
Qi, J., Gao, J., & Wei, G. (2021). Linking Bacterial-Fungal
Relationships to Microbial Diversity and Soil Nutrient Cycling.MSystems, 6(2), e01052-20.
https://doi.org/10.1128/mSystems.01052-20
Jones, R. T., Robeson,
M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A
comprehensive survey of soil acidobacterial diversity using
pyrosequencing and clone library analyses. The ISME Journal,3(4), 442–453. https://doi.org/10.1038/ismej.2008.127
Kaboré, O. D.,
Godreuil, S., & Drancourt, M. (2020). Planctomycetes as Host-Associated
Bacteria: A Perspective That Holds Promise for Their Future Isolations,
by Mimicking Their Native Environmental Niches in Clinical Microbiology
Laboratories. Frontiers in Cellular and Infection Microbiology,10, 519301. https://doi.org/10.3389/fcimb.2020.519301
Karhu, K., Auffret, M.
D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K.,
Subke, J.-A., Wookey, P. A., Ågren, G. I., Sebastià, M.-T., Gouriveau,
F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., & Hartley,
I. P. (2014). Temperature sensitivity of soil respiration rates enhanced
by microbial community response. Nature, 513(7516),
81–84. https://doi.org/10.1038/nature13604
King, A. J., Freeman,
K. R., McCormick, K. F., Lynch, R. C., Lozupone, C., Knight, R., &
Schmidt, S. K. (2010). Biogeography and habitat modelling of high-alpine
bacteria. Nature Communications, 1(5).
https://doi.org/10.1038/ncomms1055
Külling, N., Adde, A.,
& Fopp, F., Schweiger, A. K., Broennimann, O., Rey, P.L., Giuliani, G.,
Goicolea, T., Petitpierre, B., Zimmermann, N.E., Pellissier, L.,
Altermatt, F., Lehmann,A., and Guisan, A. (In review). SWECO25: A
cross-thematic raster database for ecological research in Switzerland.Under Review in Scientific Data.
Ladau, J., Shi, Y.,
Jing, X., He, J.-S., Chen, L., Lin, X., Fierer, N., Gilbert, J. A.,
Pollard, K. S., & Chu, H. (2018). Existing Climate Change Will Lead to
Pronounced Shifts in the Diversity of Soil Prokaryotes. MSystems,3(5). https://doi.org/10.1128/msystems.00167-18
Landis, J. R., &
Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 33(1), 159–174.
Lauber, C. L., Hamady,
M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of
soil pH as a predictor of soil bacterial community structure at the
continental scale. Applied and Environmental Microbiology,75(15), 5111–5120. https://doi.org/10.1128/AEM.00335-09
Lavrinienko, A.,
Jernfors, T., Koskimäki, J. J., Pirttilä, A. M., & Watts, P. C. (2021).
Does Intraspecific Variation in rDNA Copy Number Affect Analysis of
Microbial Communities? Trends in Microbiology, 29(1),
19–27. https://doi.org/10.1016/j.tim.2020.05.019
Lazarevic, V.,
Whiteson, K., Huse, S., Hernandez, D., Farinelli, L., Østerås, M.,
Schrenzel, J., & François, P. (2009). Metagenomic study of the oral
microbiota by Illumina high-throughput sequencing. Journal of
Microbiological Methods, 79(3), 266–271.
https://doi.org/10.1016/j.mimet.2009.09.012
Lee-Yaw, J., L.
McCune, J., Pironon, S., & N. Sheth, S. (2022). Species distribution
models rarely predict the biology of real populations. Ecography,2022(6), 1–16. https://doi.org/10.1111/ecog.05877
Lembrechts, J. J.,
Broeders, L., de Gruyter, J., Radujković, D., Ramirez-Rojas, I., Lenoir,
J., & Verbruggen, E. (2020). A framework to bridge scales in
distribution modeling of soil microbiota. FEMS Microbiology
Ecology, 96(5), 1–9. https://doi.org/10.1093/FEMSEC/FIAA051
Lembrechts, J. J.,
Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species
distribution models. Ecography, 42(7), 1267–1279.
https://doi.org/10.1111/ecog.03947
Malard, L. A., Mod, H.
K., Guex, N., Broennimann, O., Yashiro, E., Lara, E., Mitchell, E. A.
D., Niculita-Hirzel, H., & Guisan, A. (2022). Comparative analysis of
diversity and environmental niches of soil bacterial, archaeal, fungal
and protist communities reveal niche divergences along environmental
gradients in the Alps. Soil Biology and Biochemistry,169(April), 108674.
https://doi.org/10.1016/j.soilbio.2022.108674
Marshall, L.,
Carvalheiro, L. G., Aguirre‐Gutiérrez, J., Bos, M., Groot, G. A.,
Kleijn, D., Potts, S. G., Reemer, M., Roberts, S., Scheper, J., &
Biesmeijer, J. C. (2015). Testing projected wild bee distributions in
agricultural habitats: Predictive power depends on species traits and
habitat type. Ecology and Evolution, 5(19), 4426–4436.
https://doi.org/10.1002/ece3.1579
Mazel, F., Malard, L.,
Niculita-Hirzel, H., Yashiro, E., Mod, H. K., Mitchell, E. A. D.,
Singer, D., Buri, A., Pinto, E., Guex, N., Lara, E., & Guisan, A.
(2021). Soil protist function varies with elevation in the Swiss Alps.Environmental Microbiology, 00.
https://doi.org/10.1111/1462-2920.15686
McCune, J. L.,
Rosner‐Katz, H., Bennett, J. R., Schuster, R., & Kharouba, H. M.
(2020). Do traits of plant species predict the efficacy of species
distribution models for finding new occurrences? Ecology and
Evolution, 10(11), 5001–5014.
https://doi.org/10.1002/ece3.6254
Mod, H. K., Buri, A.,
Yashiro, E., Guex, N., Malard, L., Pinto-Figueroa, E., Pagni, M.,
Niculita-Hirzel, H., van der Meer, J. R., & Guisan, A. (2021).
Predicting spatial patterns of soil bacteria under current and future
environmental conditions. ISME Journal.
https://doi.org/10.1038/s41396-021-00947-5
Mod, H. K., Scherrer,
D., Di Cola, V., Broennimann, O., Blandenier, Q., Breiner, F. T., Buri,
A., Goudet, J., Guex, N., Lara, E., Mitchell, E. A. D., Niculita‐Hirzel,
H., Pagni, M., Pellissier, L., Pinto‐Figueroa, E., Sanders, I. R.,
Schmidt, B. R., Seppey, C. V. W., Singer, D., … Guisan, A.
(2020). Greater topoclimatic control of above‐ versus below‐ground
communities. Global Change Biology, 26(12), 6715–6728.
https://doi.org/10.1111/gcb.15330
Murali, A., Bhargava,
A., & Wright, E. S. (2018). IDTAXA: A novel approach for accurate
taxonomic classification of microbiome sequences. Microbiome,6(1), 140. https://doi.org/10.1186/s40168-018-0521-5
Navarrete, A. A.,
Kuramae, E. E., De Hollander, M., Pijl, A. S., Van Veen, J. A., & Tsai,
S. M. (2013). Acidobacterial community responses to agricultural
management of soybean in Amazon forest soils. FEMS Microbiology
Ecology, 83(3), 607–621.
https://doi.org/10.1111/1574-6941.12018
Nottingham, A. T.,
Bååth, E., Reischke, S., Salinas, N., & Meir, P. (2019). Adaptation of
soil microbial growth to temperature: Using a tropical elevation
gradient to predict future changes. Global Change Biology,25(3), 827–838. https://doi.org/10.1111/gcb.14502
Nottingham, A. T.,
Whitaker, J., Turner, B. L., Salinas, N., Zimmermann, M., Malhi, Y., &
Meir, P. (2015). Climate Warming and Soil Carbon in Tropical Forests:
Insights from an Elevation Gradient in the Peruvian Andes.BioScience, 65(9), 906–921.
https://doi.org/10.1093/biosci/biv109
Nunan, N., Wu, K.,
Young, I. M., Crawford, J. W., & Ritz, K. (2003). Spatial distribution
of bacterial communities and their relationships with the
micro-architecture of soil. FEMS Microbiology Ecology,44(2), 203–215. https://doi.org/10.1016/S0168-6496(03)00027-8
Pearce, J., &
Ferrier, S. (2001). The practical value of modelling relative abundance
of species for regional conservation planning: A case study.Biological Conservation, 98(1), 33–43.
https://doi.org/10.1016/S0006-3207(00)00139-7
Peterson, A. T.,
Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E.,
Nakamura, M., & Araújo, M. B. (2011). Ecological Niches and
Geographic Distributions. Princeton University Press.
https://doi.org/10.1515/9781400840670
Philippot, L., Spor,
A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A., &
Maron, P.-A. (2013). Loss in microbial diversity affects nitrogen
cycling in soil. The ISME Journal, 7(8), 1609–1619.
https://doi.org/10.1038/ismej.2013.34
Pinto-figueroa, E. A.,
Seddon, E., Yashiro, E., Buri, A., Niculita-hirzel, H., Meer, J. R. V.
D., & Guisan, A. (2019). Archaeorhizomycetes Spatial Distribution
in Soils Along Wide Elevational and Environmental Gradients Reveal
Co-abundance Patterns With Other Fungal Saprobes and Potential
Weathering Capacities. 10(April), 1–13.
https://doi.org/10.3389/fmicb.2019.00656
Pradervand, J.-N.,
Dubuis, A., Pellissier, L., Guisan, A., & Randin, C. (2014). Very high
resolution environmental predictors in species distribution models:
Moving beyond topography? Progress in Physical Geography: Earth
and Environment, 38(1), 79–96.
https://doi.org/10.1177/0309133313512667
Qiao, H., Peterson, A.
T., Ji, L., & Hu, J. (2017). Using data from related species to
overcome spatial sampling bias and associated limitations in ecological
niche modelling. Methods in Ecology and Evolution, 8(12),
1804–1812. https://doi.org/10.1111/2041-210X.12832
Quast, C., Pruesse,
E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., &
Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project:
Improved data processing and web-based tools. Nucleic Acids
Research, 41(D1), D590–D596.
https://doi.org/10.1093/nar/gks1219
R Core Team. (2023).R: A language and environment for statistical computing. (4.3.0)
[Computer software]. R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/
Regos, A., Gagne, L.,
Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of
species traits and environmental predictors on performance and
transferability of ecological niche models. Scientific Reports,9(1), 1–14. https://doi.org/10.1038/s41598-019-40766-5
Ren, B., Hu, Y., Chen,
B., Zhang, Y., Thiele, J., Shi, R., Liu, M., & Bu, R. (2018). Soil pH
and plant diversity shape soil bacterial community structure in the
active layer across the latitudinal gradients in continuous permafrost
region of Northeastern China. Scientific Reports, 8(1),
1–10. https://doi.org/10.1038/s41598-018-24040-8
Rocci, K. S.,
Lavallee, J. M., Stewart, C. E., & Cotrufo, M. F. (2021). Soil organic
carbon response to global environmental change depends on its
distribution between mineral-associated and particulate organic matter:
A meta-analysis. Science of The Total Environment, 793,
148569. https://doi.org/10.1016/j.scitotenv.2021.148569
Schmidt, P.-A.,
Bálint, M., Greshake, B., Bandow, C., Römbke, J., & Schmitt, I. (2013).
Illumina metabarcoding of a soil fungal community. Soil Biology
and Biochemistry, 65, 128–132.
https://doi.org/10.1016/j.soilbio.2013.05.014
Schröder, B. (2008).
Challenges of species distribution modeling belowground. Journal
of Plant Nutrition and Soil Science, 171(3), 325–337.
https://doi.org/10.1002/jpln.200700027
Seppey, C. V. W.,
Broennimann, O., Buri, A., Singer, D., Mitchell, E. A. D., Hirzel, H.
N., & Guisan, A. (2020). Soil protist diversity in the Swiss western
Alps is better predicted by topo ‐ climatic than by edaphic variables.Journal of Biogeography, September 2019, 866–878.
https://doi.org/10.1111/jbi.13755
Seppey, C. V. W.,
Lara, E., Broennimann, O., Guisan, A., Malard, L., Singer, D., Yashiro,
E., & Fournier, B. (2023). Landscape structure is a key driver of soil
protist diversity in meadows in the Swiss Alps. Landscape
Ecology, 38(4), 949–965.
https://doi.org/10.1007/s10980-022-01572-z
Serna-Chavez, H. M.,
Fierer, N., & Van Bodegom, P. M. (2013). Global drivers and patterns of
microbial abundance in soil. Global Ecology and Biogeography,22(10), 1162–1172. https://doi.org/10.1111/geb.12070
Smith, A. B., Godsoe,
W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, D. (2019). Niche
Estimation Above and Below the Species Level. Trends in Ecology
and Evolution, 34(3), 260–273.
https://doi.org/10.1016/j.tree.2018.10.012
Stoddard, S. F.,
Smith, B. J., Hein, R., Roller, B. R. K., & Schmidt, T. M. (2015).
rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria
and archaea and a new foundation for future development. Nucleic
Acids Research, 43(D1), D593–D598.
https://doi.org/10.1093/nar/gku1201
Swets, J. A. (1988).
Measuring the Accuracy of Diagnostic Systems. Science,240(4857), 1285–1293. https://doi.org/10.1126/science.3287615
Tay, J. K.,
Narasimhan, B., & Hastie, T. (2023). Elastic Net Regularization Paths
for All Generalized Linear Models. Journal of Statistical
Software, 106(1). https://doi.org/10.18637/jss.v106.i01
Terrat, S., Horrigue,
W., Dequietd, S., Saby, N. P. A., Lelièvre, M., Nowak, V., Tripied, J.,
Régnier, T., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Karimi,
B., Bispo, A., Maron, P. A., Prévost-Bouré, N. C., & Ranjard, L.
(2017). Mapping and predictive variations of soil bacterial richness
across France. PLoS ONE, 12(10), 5–8.
https://doi.org/10.1371/journal.pone.0186766
Tessarolo, G., Lobo,
J. M., Rangel, T. F., & Hortal, J. (2021). High uncertainty in the
effects of data characteristics on the performance of species
distribution models. Ecological Indicators, 121, 107147.
https://doi.org/10.1016/j.ecolind.2020.107147
Thuiller, W., Brotons,
L., Araújo, M. B., & Lavorel, S. (2004). Effects of restricting
environmental range of data to project current and future species
distributions. Ecography, 27(2), 165–172.
https://doi.org/10.1111/j.0906-7590.2004.03673.x
Tian, L., Cai, T.,
Goetghebeur, E., & Wei, L. J. (2007). Model evaluation based on the
sampling distribution of estimated absolute prediction error.Biometrika, 94(2), 297–311.
https://doi.org/10.1093/biomet/asm036
Tôrres, N. M., De
Marco, P., Santos, T., Silveira, L., De Almeida Jácomo, A. T., &
Diniz-Filho, J. A. F. (2012). Can species distribution modelling provide
estimates of population densities? A case study with jaguars in the
Neotropics: Distribution models and population density. Diversity
and Distributions, 18(6), 615–627.
https://doi.org/10.1111/j.1472-4642.2012.00892.x
Trumbore, S. E., &
Czimczik, C. I. (2008). An Uncertain Future for Soil Carbon.Science, 321(5895), 1455–1456.
https://doi.org/10.1126/science.1160232
Van Couwenberghe, R.,
Collet, C., Pierrat, J.-C., Verheyen, K., & Gégout, J.-C. (2013). Can
species distribution models be used to describe plant abundance
patterns? Ecography, 36(6), 665–674.
https://doi.org/10.1111/j.1600-0587.2012.07362.x
Vaulot, D., Geisen,
S., Mahé, F., & Bass, D. (2022). pr2‐primers: An 18S rRNA primer
database for protists. Molecular Ecology Resources, 22(1),
168–179. https://doi.org/10.1111/1755-0998.13465
Von Däniken, I.,
Guisan, A., & Lane, S. (2014). RechAlp.vd: Une nouvelle
plateforme UNIL de support pour la recherche transdisciplinaire dans les
Alpes vaudoises [Text/html,application/pdf,text/html].
https://doi.org/10.5169/SEALS-513645
Waldock, C.,
Stuart-Smith, R. D., Albouy, C., Cheung, W. W. L., Edgar, G. J.,
Mouillot, D., Tjiputra, J., & Pellissier, L. (2022). A quantitative
review of abundance-based species distribution models. Ecography,2022(1), 1–18. https://doi.org/10.1111/ecog.05694
Wisz, M. S., Hijmans,
R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS
Predicting Species Distributions Working Group†. (2008). Effects of
sample size on the performance of species distribution models.Diversity and Distributions, 14(5), 763–773.
https://doi.org/10.1111/j.1472-4642.2008.00482.x
Wood, S. N. (2017).Generalized additive models: An introduction with R (Second
edition). CRC Press/Taylor & Francis Group.
Yashiro, E.,
Pinto-figueroa, E., Buri, A., Spangenberg, J. E., & Adatte, T. (2016).Local Environmental Factors Drive Divergent Grassland Soil
Bacterial Communities in the Western Swiss Alps. 82(21),
6303–6316. https://doi.org/10.1128/AEM.01170-16.Editor
Yashiro, E.,
Pinto-figueroa, E., Buri, A., Spangenberg, J. E., Adatte, T.,
Niculita-hirzel, H., Guisan, A., & Meer, J. R. V. D. (2018). Meta-scale
mountain grassland observatories uncover commonalities as well as
specific interactions among plant and non-rhizosphere soil bacterial
communities. Scientific Reports, January, 1–12.
https://doi.org/10.1038/s41598-018-24253-x