Figure 5. Proportion of GLMs selecting covariates within edaphic, climatic, land cover, remote-sensing and topographic groups of covariates for Bacteria, Archaea, Fungi, and Protist. Corresponding figures for other modelling algorithms are available in Supporting Information.

Data availability statement

The raw sequence data is available on NCBI bioproject number PRJNA810480 and PRJEB30010. All codes are available on github (to respect double blind reviewing, link will only be given upon acceptance). Modelling results for each individual OTU are available on Figshare:https://figshare.com/s/825799db5d4fdc9a2f87(private link, which will be published upon acceptance).

References

Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U. (2022). Full UNITE+INSD dataset for Fungi[Application/gzip]. UNITE Community. https://doi.org/10.15156/BIO/2483925
Adde, A., Rey, P.-L., Fopp, F., Petitpierre, B., Schweiger, A. K., Broennimann, O., Lehmann, A., Zimmermann, N. E., Altermatt, F., Pellissier, L., & Guisan, A. (2023). Too many candidates: Embedded covariate selection procedure for species distribution modelling with the covsel R package.Ecological Informatics, 75, 102080. https://doi.org/10.1016/j.ecoinf.2023.102080
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS).Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances,5(1), 1–12. https://doi.org/10.1126/sciadv.aat4858
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., … Bork, P. (2018). Structure and function of the global topsoil microbiome.Nature, 560(7717), 233–237. https://doi.org/10.1038/s41586-018-0386-6
Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., Shevliakova, E., Pan, Y., Poulter, B., Anav, A., Friedlingstein, P., Houghton, R., & Running, S. (2017). Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 7(2), 148–152. https://doi.org/10.1038/nclimate3204
Baquero, F., Coque, T. M., Galán, J. C., & Martinez, J. L. (2021). The Origin of Niches and Species in the Bacterial World. Frontiers in Microbiology,12, 657986. https://doi.org/10.3389/fmicb.2021.657986
Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855
Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, T., Yurkov, A., Begerow, D., Berner, D., Buscot, F., Daniel, R., Diekötter, T., Ehnes, R. B., Erdmann, G., Fischer, C., Foesel, B., … Schrumpf, M. (2012). General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043292
Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10), 1210–1218. https://doi.org/10.1111/2041-210X.12403
Breiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution, 9(4), 802–808. https://doi.org/10.1111/2041-210X.12957
Broennimann, O., & Guisan, A. (In review). CHclim25—A spatially and temporally very high resolution climatic dataset for Switzerland. 2023. Under Review in Scientific Data.
Bryant, D. A. (2019). Phototrophy and Phototrophs. In Reference Module in Life Sciences(p. B9780128096338207000). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20672-9
Buri, A., Grand, S., Yashiro, E., Adatte, T., Spangenberg, J. E., Pinto-Figueroa, E., Verrecchia, E., & Guisan, A. (2020). What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. Journal of Biogeography,47(5), 1143–1153. https://doi.org/10.1111/jbi.13803
Carter, A., Kearney, M., Mitchell, N., Hartley, S., Porter, W., & Nelson, N. (2016). Modelling the soil microclimate: Does the spatial or temporal resolution of input parameters matter? Frontiers of Biogeography,7(4). https://doi.org/10.21425/F5FBG27849
Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., … Webster, N. S. (2019). Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569–586. https://doi.org/10.1038/s41579-019-0222-5
Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G., & Guisan, A. (2022). Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology and Evolution, 10, 944116. https://doi.org/10.3389/fevo.2022.944116
Cianfrani, C., Buri, A., Verrecchia, E., & Guisan, A. (2018). Generalizing soil properties in geographic space: Approaches used and ways forward. PLoS ONE,13(12), 1–17. https://doi.org/10.1371/journal.pone.0208823
Collart, F., Broennimann, O., Guisan, A., & Vanderpoorten, A. (2023). Ecological and biological indicators of the accuracy of species distribution models: Lessons from European bryophytes. Ecography, e06721. https://doi.org/10.1111/ecog.06721
Collart, F., & Guisan, A. (2023). Small to train, small to test: Dealing with low sample size in model evaluation. Ecological Informatics,75, 102106. https://doi.org/10.1016/j.ecoinf.2023.102106
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. https://doi.org/10.1038/nature20150
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY.Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,440(7081), 165–173. https://doi.org/10.1038/nature04514
de Vries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., Hobbs, P. J., Quirk, H., Shipley, B., Cornelissen, J. H. C., Kattge, J., & Bardgett, R. D. (2012). Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities.Ecology Letters, 15(11), 1230–1239. https://doi.org/10.1111/j.1461-0248.2012.01844.x
Deiner, K., Walser, J.-C., Mächler, E., & Altermatt, F. (2015). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 183, 53–63. https://doi.org/10.1016/j.biocon.2014.11.018
Deng, H. (2013).Guided Random Forest in the RRF Package. https://doi.org/10.48550/ARXIV.1306.0237
Deng, H., & Runger, G. (2013). Gene selection with guided regularized random forest.Pattern Recognition, 46(12), 3483–3489. https://doi.org/10.1016/j.patcog.2013.05.018
Descombes, P., Walthert, L., Baltensweiler, A., Meuli, R. G., Karger, D. N., Ginzler, C., Zurell, D., & Zimmermann, N. E. (2020). Spatial modelling of ecological indicator values improves predictions of plant distributions in complex landscapes. Ecography, 43(10), 1448–1463. https://doi.org/10.1111/ecog.05117
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance.Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P., & Guisan, A. (2013). Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables.Journal of Vegetation Science, 24(4), 593–606. https://doi.org/10.1111/jvs.12002
Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P., & Guisan, A. (2011). Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches: Predicting plant species richness. Diversity and Distributions,17(6), 1122–1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x
Efron, B. (1983). Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. Journal of the American Statistical Association, 78(382), 316–331. https://doi.org/10.1080/01621459.1983.10477973
Efron, B., & Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap method. Journal of the American Statistical Association, 92(438), 548–560. https://doi.org/10.1080/01621459.1997.10474007
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103
Franklin, J. (2010).Mapping Species Distributions: Spatial Inference and Prediction(1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511810602
Galazzo, G., Van Best, N., Benedikter, B. J., Janssen, K., Bervoets, L., Driessen, C., Oomen, M., Lucchesi, M., Van Eijck, P. H., Becker, H. E. F., Hornef, M. W., Savelkoul, P. H., Stassen, F. R. M., Wolffs, P. F., & Penders, J. (2020). How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches. Frontiers in Cellular and Infection Microbiology, 10, 403. https://doi.org/10.3389/fcimb.2020.00403
Giner, C. R., Forn, I., Romac, S., Logares, R., De Vargas, C., & Massana, R. (2016). Environmental Sequencing Provides Reasonable Estimates of the Relative Abundance of Specific Picoeukaryotes. Applied and Environmental Microbiology, 82(15), 4757–4766. https://doi.org/10.1128/AEM.00560-16
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional.Frontiers in Microbiology, 8(NOV), 1–6. https://doi.org/10.3389/fmicb.2017.02224
Greenwell, B., Boehmke, B., Cunningham, J., & GBM Developers. (2022). gbm: Generalized Boosted Regression Models (2.1.8.1) [Computer software].
Griffiths, R. I., Thomson, B. C., Plassart, P., Gweon, H. S., Stone, D., Creamer, R. E., Lemanceau, P., & Bailey, M. J. (2016). Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Applied Soil Ecology, 97, 61–68. https://doi.org/10.1016/j.apsoil.2015.06.018
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H. C. F., Lara, E., Le Bescot, N., Logares, R., … Christen, R. (2012). The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160
Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene.Ecological Modelling, 157(2–3), 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1
Guisan, A., Graham, C. H., Elith, J., Huettmann, F., & the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions,13(3), 332–340. https://doi.org/10.1111/j.1472-4642.2007.00342.x
Guisan, A., & Hofer, U. (2003). Predicting reptile distributions at the mesoscale: Relation to climate and topography: Predicting reptile distributions at the mesoscale. Journal of Biogeography, 30(8), 1233–1243. https://doi.org/10.1046/j.1365-2699.2003.00914.x
Guisan, A., & Rahbek, C. (2011). SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x
Guisan, A., Theurillat, J.-P., & Kienast, F. (1998). Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 9(1), 65–74. https://doi.org/10.2307/3237224
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press. https://doi.org/10.1017/9781139028271
Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: TECHNIQUES, DATA, OR SPECIES’ CHARACTERISTICS? Ecological Monographs, 77(4), 615–630. https://doi.org/10.1890/06-1060.1
Guo, F., Lenoir, J., & Bonebrake, T. C. (2018). Land-use change interacts with climate to determine elevational species redistribution. Nature Communications, 9(1), 1–7. https://doi.org/10.1038/s41467-018-03786-9
Hadly, E. A., Spaeth, P. A., & Li, C. (2009). Niche conservatism above the species level.Proceedings of the National Academy of Sciences of the United States of America, 106(SUPPL. 2), 19707–19714. https://doi.org/10.1073/pnas.0901648106
Hallman, T. A., & Robinson, W. D. (2020). Deciphering ecology from statistical artefacts: Competing influence of sample size, prevalence and habitat specialization on species distribution models and how small evaluation datasets can inflate metrics of performance. Diversity and Distributions, 26(3), 315–328. https://doi.org/10.1111/ddi.13030
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
Hédl, R., Petřík, P., & Boublík, K. (2011). Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains.Environmental Pollution, 159(10), 2586–2593. https://doi.org/10.1016/j.envpol.2011.06.014
Hengl, T., Mendes De Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748
Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Herrmann, M., Wegner, C.-E., Taubert, M., Geesink, P., Lehmann, K., Yan, L., Lehmann, R., Totsche, K. U., & Küsel, K. (2019). Predominance of Cand. Patescibacteria in Groundwater Is Caused by Their Preferential Mobilization From Soils and Flourishing Under Oligotrophic Conditions.Frontiers in Microbiology, 10, 1407. https://doi.org/10.3389/fmicb.2019.01407
Horrigue, W., Dequiedt, S., Prévost-bouré, N. C., Jolivet, C., Saby, N. P. A., Arrouays, D., Bispo, A., Maron, P., & Ranjard, L. (2016). Predictive model of soil molecular microbial biomass. Ecological Indicators,64, 203–211. https://doi.org/10.1016/j.ecolind.2015.12.004
Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(0), 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Irvine, K. M., Rodhouse, T. J., & Keren, I. N. (2016). Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution. Journal of Agricultural, Biological and Environmental Statistics, 21(4), 619–640. https://doi.org/10.1007/s13253-016-0265-2
Jiao, S., Peng, Z., Qi, J., Gao, J., & Wei, G. (2021). Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling.MSystems, 6(2), e01052-20. https://doi.org/10.1128/mSystems.01052-20
Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal,3(4), 442–453. https://doi.org/10.1038/ismej.2008.127
Kaboré, O. D., Godreuil, S., & Drancourt, M. (2020). Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Frontiers in Cellular and Infection Microbiology,10, 519301. https://doi.org/10.3389/fcimb.2020.519301
Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. I., Sebastià, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., & Hartley, I. P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516), 81–84. https://doi.org/10.1038/nature13604
King, A. J., Freeman, K. R., McCormick, K. F., Lynch, R. C., Lozupone, C., Knight, R., & Schmidt, S. K. (2010). Biogeography and habitat modelling of high-alpine bacteria. Nature Communications, 1(5). https://doi.org/10.1038/ncomms1055
Külling, N., Adde, A., & Fopp, F., Schweiger, A. K., Broennimann, O., Rey, P.L., Giuliani, G., Goicolea, T., Petitpierre, B., Zimmermann, N.E., Pellissier, L., Altermatt, F., Lehmann,A., and Guisan, A. (In review). SWECO25: A cross-thematic raster database for ecological research in Switzerland.Under Review in Scientific Data.
Ladau, J., Shi, Y., Jing, X., He, J.-S., Chen, L., Lin, X., Fierer, N., Gilbert, J. A., Pollard, K. S., & Chu, H. (2018). Existing Climate Change Will Lead to Pronounced Shifts in the Diversity of Soil Prokaryotes. MSystems,3(5). https://doi.org/10.1128/msystems.00167-18
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology,75(15), 5111–5120. https://doi.org/10.1128/AEM.00335-09
Lavrinienko, A., Jernfors, T., Koskimäki, J. J., Pirttilä, A. M., & Watts, P. C. (2021). Does Intraspecific Variation in rDNA Copy Number Affect Analysis of Microbial Communities? Trends in Microbiology, 29(1), 19–27. https://doi.org/10.1016/j.tim.2020.05.019
Lazarevic, V., Whiteson, K., Huse, S., Hernandez, D., Farinelli, L., Østerås, M., Schrenzel, J., & François, P. (2009). Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. Journal of Microbiological Methods, 79(3), 266–271. https://doi.org/10.1016/j.mimet.2009.09.012
Lee-Yaw, J., L. McCune, J., Pironon, S., & N. Sheth, S. (2022). Species distribution models rarely predict the biology of real populations. Ecography,2022(6), 1–16. https://doi.org/10.1111/ecog.05877
Lembrechts, J. J., Broeders, L., de Gruyter, J., Radujković, D., Ramirez-Rojas, I., Lenoir, J., & Verbruggen, E. (2020). A framework to bridge scales in distribution modeling of soil microbiota. FEMS Microbiology Ecology, 96(5), 1–9. https://doi.org/10.1093/FEMSEC/FIAA051
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267–1279. https://doi.org/10.1111/ecog.03947
Malard, L. A., Mod, H. K., Guex, N., Broennimann, O., Yashiro, E., Lara, E., Mitchell, E. A. D., Niculita-Hirzel, H., & Guisan, A. (2022). Comparative analysis of diversity and environmental niches of soil bacterial, archaeal, fungal and protist communities reveal niche divergences along environmental gradients in the Alps. Soil Biology and Biochemistry,169(April), 108674. https://doi.org/10.1016/j.soilbio.2022.108674
Marshall, L., Carvalheiro, L. G., Aguirre‐Gutiérrez, J., Bos, M., Groot, G. A., Kleijn, D., Potts, S. G., Reemer, M., Roberts, S., Scheper, J., & Biesmeijer, J. C. (2015). Testing projected wild bee distributions in agricultural habitats: Predictive power depends on species traits and habitat type. Ecology and Evolution, 5(19), 4426–4436. https://doi.org/10.1002/ece3.1579
Mazel, F., Malard, L., Niculita-Hirzel, H., Yashiro, E., Mod, H. K., Mitchell, E. A. D., Singer, D., Buri, A., Pinto, E., Guex, N., Lara, E., & Guisan, A. (2021). Soil protist function varies with elevation in the Swiss Alps.Environmental Microbiology, 00. https://doi.org/10.1111/1462-2920.15686
McCune, J. L., Rosner‐Katz, H., Bennett, J. R., Schuster, R., & Kharouba, H. M. (2020). Do traits of plant species predict the efficacy of species distribution models for finding new occurrences? Ecology and Evolution, 10(11), 5001–5014. https://doi.org/10.1002/ece3.6254
Mod, H. K., Buri, A., Yashiro, E., Guex, N., Malard, L., Pinto-Figueroa, E., Pagni, M., Niculita-Hirzel, H., van der Meer, J. R., & Guisan, A. (2021). Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME Journal. https://doi.org/10.1038/s41396-021-00947-5
Mod, H. K., Scherrer, D., Di Cola, V., Broennimann, O., Blandenier, Q., Breiner, F. T., Buri, A., Goudet, J., Guex, N., Lara, E., Mitchell, E. A. D., Niculita‐Hirzel, H., Pagni, M., Pellissier, L., Pinto‐Figueroa, E., Sanders, I. R., Schmidt, B. R., Seppey, C. V. W., Singer, D., … Guisan, A. (2020). Greater topoclimatic control of above‐ versus below‐ground communities. Global Change Biology, 26(12), 6715–6728. https://doi.org/10.1111/gcb.15330
Murali, A., Bhargava, A., & Wright, E. S. (2018). IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome,6(1), 140. https://doi.org/10.1186/s40168-018-0521-5
Navarrete, A. A., Kuramae, E. E., De Hollander, M., Pijl, A. S., Van Veen, J. A., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607–621. https://doi.org/10.1111/1574-6941.12018
Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N., & Meir, P. (2019). Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biology,25(3), 827–838. https://doi.org/10.1111/gcb.14502
Nottingham, A. T., Whitaker, J., Turner, B. L., Salinas, N., Zimmermann, M., Malhi, Y., & Meir, P. (2015). Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes.BioScience, 65(9), 906–921. https://doi.org/10.1093/biosci/biv109
Nunan, N., Wu, K., Young, I. M., Crawford, J. W., & Ritz, K. (2003). Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiology Ecology,44(2), 203–215. https://doi.org/10.1016/S0168-6496(03)00027-8
Pearce, J., & Ferrier, S. (2001). The practical value of modelling relative abundance of species for regional conservation planning: A case study.Biological Conservation, 98(1), 33–43. https://doi.org/10.1016/S0006-3207(00)00139-7
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological Niches and Geographic Distributions. Princeton University Press. https://doi.org/10.1515/9781400840670
Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A., & Maron, P.-A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7(8), 1609–1619. https://doi.org/10.1038/ismej.2013.34
Pinto-figueroa, E. A., Seddon, E., Yashiro, E., Buri, A., Niculita-hirzel, H., Meer, J. R. V. D., & Guisan, A. (2019). Archaeorhizomycetes Spatial Distribution in Soils Along Wide Elevational and Environmental Gradients Reveal Co-abundance Patterns With Other Fungal Saprobes and Potential Weathering Capacities. 10(April), 1–13. https://doi.org/10.3389/fmicb.2019.00656
Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A., & Randin, C. (2014). Very high resolution environmental predictors in species distribution models: Moving beyond topography? Progress in Physical Geography: Earth and Environment, 38(1), 79–96. https://doi.org/10.1177/0309133313512667
Qiao, H., Peterson, A. T., Ji, L., & Hu, J. (2017). Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 8(12), 1804–1812. https://doi.org/10.1111/2041-210X.12832
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
R Core Team. (2023).R: A language and environment for statistical computing. (4.3.0) [Computer software]. R Foundation for Statistical Computing,  Vienna, Austria. https://www.R-project.org/
Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Scientific Reports,9(1), 1–14. https://doi.org/10.1038/s41598-019-40766-5
Ren, B., Hu, Y., Chen, B., Zhang, Y., Thiele, J., Shi, R., Liu, M., & Bu, R. (2018). Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-24040-8
Rocci, K. S., Lavallee, J. M., Stewart, C. E., & Cotrufo, M. F. (2021). Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of The Total Environment, 793, 148569. https://doi.org/10.1016/j.scitotenv.2021.148569
Schmidt, P.-A., Bálint, M., Greshake, B., Bandow, C., Römbke, J., & Schmitt, I. (2013). Illumina metabarcoding of a soil fungal community. Soil Biology and Biochemistry, 65, 128–132. https://doi.org/10.1016/j.soilbio.2013.05.014
Schröder, B. (2008). Challenges of species distribution modeling belowground. Journal of Plant Nutrition and Soil Science, 171(3), 325–337. https://doi.org/10.1002/jpln.200700027
Seppey, C. V. W., Broennimann, O., Buri, A., Singer, D., Mitchell, E. A. D., Hirzel, H. N., & Guisan, A. (2020). Soil protist diversity in the Swiss western Alps is better predicted by topo ‐ climatic than by edaphic variables.Journal of Biogeography, September 2019, 866–878. https://doi.org/10.1111/jbi.13755
Seppey, C. V. W., Lara, E., Broennimann, O., Guisan, A., Malard, L., Singer, D., Yashiro, E., & Fournier, B. (2023). Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landscape Ecology, 38(4), 949–965. https://doi.org/10.1007/s10980-022-01572-z
Serna-Chavez, H. M., Fierer, N., & Van Bodegom, P. M. (2013). Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography,22(10), 1162–1172. https://doi.org/10.1111/geb.12070
Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, D. (2019). Niche Estimation Above and Below the Species Level. Trends in Ecology and Evolution, 34(3), 260–273. https://doi.org/10.1016/j.tree.2018.10.012
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K., & Schmidt, T. M. (2015). rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research, 43(D1), D593–D598. https://doi.org/10.1093/nar/gku1201
Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science,240(4857), 1285–1293. https://doi.org/10.1126/science.3287615
Tay, J. K., Narasimhan, B., & Hastie, T. (2023). Elastic Net Regularization Paths for All Generalized Linear Models. Journal of Statistical Software, 106(1). https://doi.org/10.18637/jss.v106.i01
Terrat, S., Horrigue, W., Dequietd, S., Saby, N. P. A., Lelièvre, M., Nowak, V., Tripied, J., Régnier, T., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Karimi, B., Bispo, A., Maron, P. A., Prévost-Bouré, N. C., & Ranjard, L. (2017). Mapping and predictive variations of soil bacterial richness across France. PLoS ONE, 12(10), 5–8. https://doi.org/10.1371/journal.pone.0186766
Tessarolo, G., Lobo, J. M., Rangel, T. F., & Hortal, J. (2021). High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecological Indicators, 121, 107147. https://doi.org/10.1016/j.ecolind.2020.107147
Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27(2), 165–172. https://doi.org/10.1111/j.0906-7590.2004.03673.x
Tian, L., Cai, T., Goetghebeur, E., & Wei, L. J. (2007). Model evaluation based on the sampling distribution of estimated absolute prediction error.Biometrika, 94(2), 297–311. https://doi.org/10.1093/biomet/asm036
Tôrres, N. M., De Marco, P., Santos, T., Silveira, L., De Almeida Jácomo, A. T., & Diniz-Filho, J. A. F. (2012). Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics: Distribution models and population density. Diversity and Distributions, 18(6), 615–627. https://doi.org/10.1111/j.1472-4642.2012.00892.x
Trumbore, S. E., & Czimczik, C. I. (2008). An Uncertain Future for Soil Carbon.Science, 321(5895), 1455–1456. https://doi.org/10.1126/science.1160232
Van Couwenberghe, R., Collet, C., Pierrat, J.-C., Verheyen, K., & Gégout, J.-C. (2013). Can species distribution models be used to describe plant abundance patterns? Ecography, 36(6), 665–674. https://doi.org/10.1111/j.1600-0587.2012.07362.x
Vaulot, D., Geisen, S., Mahé, F., & Bass, D. (2022). pr2‐primers: An 18S rRNA primer database for protists. Molecular Ecology Resources, 22(1), 168–179. https://doi.org/10.1111/1755-0998.13465
Von Däniken, I., Guisan, A., & Lane, S. (2014). RechAlp.vd: Une nouvelle plateforme UNIL de support pour la recherche transdisciplinaire dans les Alpes vaudoises [Text/html,application/pdf,text/html]. https://doi.org/10.5169/SEALS-513645
Waldock, C., Stuart-Smith, R. D., Albouy, C., Cheung, W. W. L., Edgar, G. J., Mouillot, D., Tjiputra, J., & Pellissier, L. (2022). A quantitative review of abundance-based species distribution models. Ecography,2022(1), 1–18. https://doi.org/10.1111/ecog.05694
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group†. (2008). Effects of sample size on the performance of species distribution models.Diversity and Distributions, 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
Wood, S. N. (2017).Generalized additive models: An introduction with R (Second edition). CRC Press/Taylor & Francis Group.
Yashiro, E., Pinto-figueroa, E., Buri, A., Spangenberg, J. E., & Adatte, T. (2016).Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps. 82(21), 6303–6316. https://doi.org/10.1128/AEM.01170-16.Editor
Yashiro, E., Pinto-figueroa, E., Buri, A., Spangenberg, J. E., Adatte, T., Niculita-hirzel, H., Guisan, A., & Meer, J. R. V. D. (2018). Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Scientific Reports, January, 1–12. https://doi.org/10.1038/s41598-018-24253-x